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Abstract

We develop an exchange rate target zone model with finite exit time and non-Gaussian
tails. We show how the tails are a consequence of time-varying investor risk aversion, which
generates mean-preserving spreads in the fundamental distribution. We solve explicitly for
stationary and non-stationary exchange rate paths, and show how both depend continuously
on the distance to the exit time and the target zone bands. This enables us to show how
central bank intervention is endogenous to both the distance of the fundamental to the band
and the underlying risk. We discuss how the feasibility of the target zone is shaped by the
set horizon and the degree of underlying risk, and we determine a minimum time at which
the required parity can be reached. We prove that increases in risk after a certain threshold
can yield endogenous regime shifts where the “honeymoon effects” vanish and the target
zone cannot be feasibly maintained. None of these results can be obtained by means of
the standard Gaussian or affine models. Numerical simulations allow us to recover all the
exchange rate densities established in the target zone literature.
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1 Introduction

The exchange rate target zone literature pioneered by Krugman (1991) is based on a stochastic
flexible price monetary model in continuous time. This literature highlights the role of market
expectations concerning fundamentals in shaping exchange rate movements. Given its assump-
tions of perfect credibility, it implies that central bankers need only intervene marginally at the
bounds of the target zone or allow honeymoon effects to automatically stabilize the exchange
rate. The European Monetary System (EMS) and the Exchange Rate Mechanism (ERM), which
existed from 1979 to 1999 (until participating countries adopted the Euro), provided a natural
test bed for this theory.
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The target zone model is both well accepted theoretically and has provided the intellectual jus-
tification for a nominal anchor for monetary policy. However, there is scant empirical support
for the validity of the framework. The U-shaped distribution within the target band and the
negative correlation between the exchange rate and the interest rate differential implied by the
Krugman model have found little counterpart in the data. In spite of this, the practice of using
target zones continued through the 2000’s with new member states joining the ERM-II target
band and slowly adopting the Euro. It is conceivable that future new member states will go
through the ERM process, making target zone modeling of current relevance.1 Our purpose in
this paper is to unpack target zone feasibility, while incorporating non-stationary dynamics and
a rigorous measure of risk that captures the presence of non-Gaussian tails.

We make three main contributions. First, we show how such tails can emerge in the the funda-
mental dynamics of the exchange rate as a consequence of time-varying investor risk aversion.
In our setting, the risk aversion of agents is subject to risk-on and risk-off shocks generating a
time-varying coefficient of risk-aversion. These dynamics alter the idiosyncratic country-risk pre-
mium of small open economy, which destabilises the fundamental process via a sudden bonanza
or sudden stop of capital flows during the target zone process. These tails are fully described by
means of a definition of risk which corresponds to the dynamic equivalent of a mean-preserving
spread. As is well known, risk and variance are not necessarily equivalent: variance is often
used as a proxy for risk, but by construction it cannot capture tail risk in a random variable
generated by a potentially non-Gaussian process.

Second, we explicitly consider non-stationary dynamics for a currency to exit a target zone, and
show how the feasibility of the latter is shaped both by the finite time horizon and the degree
of underlying risk. Solving for explicitly time-dependent dynamics also allows us to show how
the exchange rate is continuously determined by the distance to the time horizon as well as its
distance to the target bands. It turns out that the underlying dynamics are similar to the phe-
nomena famously described by Kac (1966), where he asked whether one could “hear the shape of
a drum.” In the case of exchange rates, in certain situations this can indeed happen, especially
when the exchange rate is pushed to the sides of the target band by an additional external force:
intuitively, this corresponds to the acoustic difference between striking a tense membrane (large
shifts in risk aversion) versus a loose one. This is what we describe in our paper. This allows
us to show how the central bank determines its intervention strategies by the degree to which it
“feels” the presence of the target zone bounds, and depends critically on the degree of underlying
risk and the band size.

Third, we show how large shocks to the investor risk aversion, leading to proportional increases
in risk in the fundamental distribution, can potentially yield a regime shift once a certain risk
threshold is crossed. This shift does not allow for honeymoon effects to happen anymore around
the target zone bands, since the increase in risk destabilizes the exchange rate dynamics to the
point that the target band is hit with excessive force, smooth-fitting procedures cannot be ap-
plied by central bank interventions and the target zone becomes untenable.

The standard case of exchange rate dynamics in a finite target zone with Gaussian-driven funda-
mentals is a simplified, limiting case of our model for which risk and variance are the same, and
which fails to provide a palatable explanation for well-known exits such as ERM-I. Correctly
specifying risk aversion shocks implies dynamics in which the exchange rate fundamental has a

1As of writing this paper, Croatia, Bulgaria and Denmark are in the ERM-II target-zone. Croatia and Bulgaria
intend to adopt the Euro whereas Denmark has a special opt-out clause from Euro adoption.
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tendency to systematically escape its purely diffusive nature and move away from its expected
value. As such, risk can be a destabilizing force which runs counter to the best efforts of a cen-
tral bank trying to maintain a target zone. This may cause persistent and potentially one-sided
deviations from central parity. Moreover, we show that the effect of risk is both nonlinear and
discontinuous. For low risk, our dynamics are similar to the standard model. As risk increases,
the exchange rate process is increasingly destabilized and requires a monotonically increasing
minimum time for the target zone to be reached. However, once a critical threshold of risk is
crossed, we observe a regime shift in which the minimum time suddenly drops down and the tar-
get zone effectively ceases to exist. The intuition behind this result is that the destabilizing part
of the fundamental generated by external risk dominates over the diffusive part. This implies
that the central bank has to widen the target zone bands in order to maintain control of the
exchange rate. This is similar to target zone models which incorporate a endogenous devaluation
risk, with one key difference. Our model does not rely on the distribution of intervention or the
level of reserves, to generate this outcome, its a direct consequence of an increase in external
risk.

This ties directly to the characterization of feasibility of a target zone. Feasibility corresponds
to the central bank being able to reach the set central parity with the agreed bands at the
chosen time horizon. Our model shows that considering non-stationary dynamics is paramount
in determining whether the chosen horizon is feasible: we characterize the minimum required
time necessary for the parity to be reached. Any smaller time horizon chosen by the central
bank would not be possible. In contrast, existing models assume away the problem by positing
perfect feasibility and stationary dynamics. We then show how the model can fit a wide range
of scenarios regarding feasibility and control, and we use Monte Carlo simulations to recover the
different exchange rate densities presented by the established target zone literature.

2 Existing literature and motivations

The seminal paper by Krugman (1991) hinges on the assumption of perfect credibility of the
target zone, which gives rise to a U-shaped distribution of the exchange rate. This implies that
the exchange rate spends most of its time near the bands of the zone, as well as a negative
relationship between the interest rate differential and exchange rate volatility. Given this “hon-
eymoon effect”, the central bank only has to intervene marginally at the bands. The only source
of risk in this model is the volatility of the Gaussian distribution. The theoretical predictions of
the model have been shown not to hold empirically by Mathieson et al. (1991), Meese and Rose
(1991) and Svensson (1991). This led to the development of so-called second-generation models,
which relax Krugman’s assumptions across two dimensions, to allow for imperfect credibility of
the target zone and for intramarginal intervention. The first dimension is studied by Bertola and
Caballero (1992) and Bertola and Svensson (1993), who relax the notion of credibility and allow
for time-varying credibility or realignment risk. They show that honeymoon effects disappear
when there is a high probability of exchange rate revaluation. Furthermore, Tristani (1994)
and Werner (1995) study endogenous realignment risk, and include mean-reverting fundamental
dynamics.

Allowing for the possibility of realignment is a way of characterizing a riskier fundamental
process, motivated by speculative attacks and constant realignment of the ERM currencies.
This is achieved by using a diffusion process with jumps, as an ad-hoc way of thickening the
tails of the distribution in order to better fit the data. The second dimension explored by second-
generation models focuses on allowing the fundamental process to be controlled intramarginally,
thus generating a hump-shaped distribution where the exchange rate spends most of its time
around central parity. Dumas and Delgado (1992) and Bessec (2003), using controlled diffusion
processes, show that the honeymoon effects are considerably weakened, putting into question the
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necessity of a target zone when central banks intervene intramarginally. Serrat (2000) generalizes
the target zone framework to a multilateral setting, and shows how spillovers from third-country
interventions can increase conditional volatilities compared to free-float regimes. Moreover, this
implies that exchange rate volatility does not need to be monotonically related to the distance
to the target zone bands, which in turn can reduce honeymoon effects. Bekaert and Gray (1998)
and Lundbergh and Teräsvirta (2006) test the implications of the second-generation models, and
find mixed evidence with a slight tendency towards the intramarginal interventions hypothesis.
Lin (2008) proposes a framework with an interesting analogy to our model, where the spot
rate can be stabilized by imposing a target zone on the forward rate. This framework requires
the setting a sequence of terminal maturity dates for the forward contracts, which generate
forward-looking expectations that effectively endogenize the bands. This is similar to our model
dynamics, which imply that the finite exit time from the target zone is akin to the maturity
date of a forward contract, at which the spot rate is required to converge.

Ajevskis (2011) extended the basic target zone model to a finite termination time setting while
maintaining the assumptions of the original model: it is the closest to our approach. Ajevskis
(2015) extends his earlier contribution by allowing the exchange rate to follow a mean-reverting
Ornstein-Uhlenbeck (OU) process and compares the difference in exchange rate-fundamental-
target zone dynamics between the OU process and Brownian motion. He solves the stationary
problem for the OU process but is unable to explicitly solve the non-stationary part of the
process. Recently, Studer-Suter and Janssen (2017) and Lera and Sornette (2016, 2018 and
2019) find empirical evidence for the target zone model for the EUR/CHF floor target zone set
by the Swiss National Bank between 2011 and 2015, the latter mapping the Krugman model to
the option chain.

In particular, Lera and Sornette (2015) show how the standard Krugman model can hold in spe-
cific cases, such as the EUR/CHF target zone, because of a sustained pressure that continuously
pushes the exchange rate closer to the bounds of the target zone, which the central bank tries to
counteract. In this particular case, the sustained pressure stemmed from the Swiss Franc being
used as a safe asset in the middle of the European crisis. This implies that there is a source
of additional risk which is radically different from the diffusive nature of Gaussian noise. This
risk destabilises the exchange rate fundamentals and creates an extra tendency to escape from
its mean and move towards the boundary. Rey (2015) famously argued that the global financial
cycles stemming from the United States generate additional risks for central banks targeting a
nominal anchor. Additionally, Gopinath and Stein (2019) and Kalemli-Özcan (2019) show how
US monetary policy shocks can affect the exchange rate of a country with minimal USD exposure
because of the dominant nature of the USD as a trade currency. All of these examples represent
possible sources of external risk that need to be included in the modeling of the fundamental
process. Lastly, Bauer et al. (2009) shows how a model with heterogeneous agents and perfect
credibility can create hump-shaped exchange rate distributions because of the contrasting forces
between informed and uninformed traders. All pre-existing attempts at modeling fundamental
risk involve either the variance of Gaussian noise or the addition of ad-hoc jumps, or by assuming
deviations from rational expectations. In our paper, we show how all these resulting exchange
rate densities can be recovered by a rigorous characterization of fundamental risk.

The paper is organised as follows. In Section 3 we define possible interpretations and sources
of external risk, in Section 4 we extend the traditional stationary framework in order to include
non-stationary dynamics, modeling the risk of the fundamental process by means of dynamic
mean-preserving spreads. Section 5 discusses the connection between risk, target zone width
and feasibility. In Section 6 we show the emergence of regime shifts once a critical threshold
of risk is reached. Section 7 explains the numerical methods employed in the simulations, and
presents the results. Section 8 presents the policy implications of our model, while 9 concludes
and discusses an agenda for future research.
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3 Risk aversion shocks, external sources of risk and mean-preserving
spreads

In this paper we want to characterize a modern target zone mechanism in which the fundamental
process can be destabilized by external risk factors, generating thick non-Gaussian tails in its
distribution. Inclusion of these characteristics in the analysis is made necessary by the presence
of risk-averse investors who have time varying risk-aversion modulated by the global financial
cycle. Entering a target zone increases the capital market integration of the country in question
which exposes countries’ fundamentals to an increased share of global and regional risk factors.2

Evidence from New Member States suggests that the magnitude of capital flows received may be
very high even if the member state does not enter the target zone process for adopting the the
Euro (Mitra, 2011).3 In short, this framework allows us to consider additional fundamental risk
arising from time-varying risk aversion generated by the global financial cycle when a currency
enters a target zone.4

Let us start with the standard flexible-price monetary model of exchange rate as in Ajevskis
(2011). The money demand function is given as

mt − pt = θyyt − θit + ε (1)

where m is log of the domestic money supply, p is log of the domestic price level, y is the log
of domestic output and i is the nominal interest rate. θy is the semi-elasticity of the money
demand with respect to output whereas θi is the absolute value of the semi-elasticity of money
demand with respect to the domestic nominal interest rate and ε is a money demand shock. The
second block is given by the expression for the real exchange rate q which is defined as

qt = Xt + p∗t − pt

where p∗ is the log of the foreign price level. The third block of this model is the uncovered
interest rate parity condition which in a linearised form is given by

EdXt = (it − i∗t )− ηt (2)

where EdXt is the is expectation of the exchange rate conditional on information available till
time t and i∗t is the foreign interest rate. The target zone framework depends critically on
the uncovered interest rate parity condition, with the currency in the target zone converging
to the target nominal interest rate at time of exit to the currency union. The UIP condition
requires risk-neutral preferences to hold. This is usually not the case when we are considering
real world situations, as investors are generally risk-averse. ηt is a time-varying risk premium
and is a consequence of risk-averse foreign investors who demand a higher compensation for
holding home bonds. ηt is widely accepted to be dependent on investors’ risk aversion. Risk

2Fornaro (2020) finds that entering a currency union increases financial integration between member states.
This is due to reduction of currency risk and the associated easing of external borrowing constraints, driven in
part by loss of national monetary and fiscal autonomy. A target zone setting is a quasi-currency union with the
chosen target zone band representing the range of expected fluctuations.

3This may be considered analogous to the index effects documented by Hau et al. (2010) for emerging market
currencies.

4Destabilization of country fundamentals is also possible via shocks to dominant global currencies such as the
Dollar, which may affect the price of risk for both the non-Dollar target currency and the target zone currency.
See Rey (2015); Avdjiev et al. (2019) for more details.
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aversion, however, is likely to change in time due to risk-on and risk-off shocks arising from global
financial conditions. Let us consider that investors face a standard problem of consumption of
two bonds, home and foreign, with concave utility U(ct) discounted at γ. Bh

t is the holding of
home (small open economy) bonds Bf

t is the holding of foreign bonds by a representative agent.
Consumption and bond holdings in period t and t+ 1 are given by the problem

max
ct+1,Bh

t ,B
f
t

∞∑
t=0

γtU(ct)

ct = Bh
t +XtB

f
t

E[ct+1] = (1 + it)B
h
t + E[Xt+1](1 + i∗t )B

f
t

At any time t, if at the future time t+ 1 the agent’s coefficient of relative risk aversion −cU ′′/U ′
were to be incremented by an amount ±(λ ∈ R+) which can be either negative (risk-on) or
positive (risk-off) with equal probability, yielding a new utility function Ū .5 Using the first-
order conditions of the problem, this implies that the asset pricing kernel (the stochastic discount
factor) will be given by

γ
Ū ′(ct+1)

U ′(ct)
= γ

U ′(ct+1)

U ′(ct)
∆U ′(ct+1) = Mt∆U

′(ct+1),

whereMt is the pricing kernel without the change in risk aversion and ∆U ′(ct+1) is the change in
curvature of the utility function due to the change in risk aversion. Note that this last term is also
a random variable. As an example, if we assume CARA utility and a log-normal consumption
process with mean µ and variance s2, this extra term is equal to e±λ(µ−ct−λs2/2), noting that
a realized −λ in the utility functional implies an increase in risk aversion. More generally, if
consumption of bonds is at two discrete time points but their evolution is continuous, this extra
term is equivalent to the Radon-Nikodým derivative for the change of measure between the
densities generated by the differently curved utility functions. The investors’ pricing kernel is
therefore

γ
Ū ′(ct+1)

U ′(ct)
=
dQ
dP

dQ̃
dQ

where Q is the foreign martingale measure of the home bond under the original measure P, and
Q̃ is the foreign martingale measure under the new utility function. The modified UIP condition
is then given by

E{dXt}
(1 + i∗t )

(1 + it)
=
dQ
dQ̃

, (3)

where the excess returns required to complete the no-arbitrage condition decreases with the
investors’ risk aversion, since dQ

dQ̃ increases with a realization of +λ (decreased risk aversion) and
vice versa. This is equivalent to the modified UIP condition in (2), where the time-varying risk
premium is dependent on the change in investor risk aversion. If we assume again log-normality
of the foreign bond, since the change in risk aversion is equally likely on each side (each ±λ is
realized with probability 0.5), it’s easily shown that that the new measure after the change in
risk aversion is given by a Gaussian density identical to the pricing kernel without the curvature

5This framework is equivalent to assuming heterogeneous investors, identical in everything except in risk
aversion, where between t and t + 1 each changes her own risk aversion to a specific amount, and the resulting
±λ is the aggregate overall change in the representative utility function.
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change, and an oscillating term that takes values ±λ with equal probability, represented by a
Bernoulli variable, that makes the overall process non-Gaussian. We note that the overall new
measure dQ̃/dP is still a martingale but is not Gaussian, even assuming an underlying Gaussian
process: the oscillation of the change in curvature of the utility function generates an extra term

dQ̃
dQ

=
1

2

(
e−(x+λ)2/2 + e−(x−λ)2/2

)
, (4)

up to a normalization constant, which is exactly the perturbation of a Gaussian process by
means of a Bernoulli variable in the drift. We therefore have a risk premium that is dependent
on the oscillation of investors’ risk aversion, ±λ with equal probability. Using equations 1-4, we
recover the standard flexible-price monetary model of the exchange rate as

θEdXt−θyyt + qt + p∗t + θi∗t + θηt − ε︸ ︷︷ ︸
vt

+mt

︸ ︷︷ ︸
ft

= Xt

Xt = θEt{dXt}+ vt +mt

= θEt{dXt}+ ft, (5)

where vt is a money demand shock (velocity) mt is money supply, usually assumed to be con-
trolled by the central bank. The fundamental process for the exchange rate evolves according
to dft = dvt + dmt. The velocity includes all money demand variables, and therefore includes
the varying risk premia from the modified UIP condition. It is commonly modeled as a driftless
Brownian motion, but in order to include from (2) the perturbations caused by time-varying
risk aversion given by (3) and (4) we augment it with the Bernoulli variable λB, where B takes
values ±1 with probability 0.5. This allows us to represent the non-Gaussian dynamics required
by the modified UIP condition, and allows us to write the fundamental process in absence of
central bank interventions as

dft = λBdt+ dWt, ft=0 = f0, (6)

where dWt is the standard Brownian motion and B is a Bernoulli random variable obtaining
values {−1, 1} each with probability 0.5 and λ ∈ R+. This non-Gaussian diffusion process, called
the dynamic mean-preserving spread (DMPS) process, has been studied by Arcand et al. (2020).
The oscillation of the Bernoulli random term generates a probability spread - an increase in risk
- around the mean of the fundamental. For any f0 ∈ R, the fundamental dynamics do not affect
the systematic average of ft, but the extra random term B introduces an extra tendency to shift
away from f0. The random term λB is not a drift that pushes systematically the fundamental
away from the mean, but is rather a destabilizing force6 that pushes probability from the cen-
ter to the tails of the distribution. As such, the process ft admits a stationary measure such
that limt→∞ P (x, t|x0, t0) = P (x) which is the sum of two Gaussian distributions, each centered
around ±λ. By modulating λ, the resulting fundamental processes can be ranked unambigu-
ously in terms of their risk, as the dynamic equivalent of the two Rothschild and Stiglitz (1970)
integral conditions for increasing risk are satisfied. For all results concerning the process we refer
to Arcand et al. (2020).

6The term λB is indeed a force, being the derivative of the probabilistic potential of the process ft.
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Risk aversion shocks calibrated by λ in the velocity, therefore, cause an increase in risk in the
fundamental that push probability away from the mean and generate non-Gaussian tails, whilst
leaving the systematic average unchanged. What generates risk in the fundamental process is
the size of the change in risk version, rather than the direction per se. As seen in 3, such
shocks cannot be represented by Gaussian fluctuations. Uncertainty in the fundamental process
is thus comprised of two parts: Gaussian fluctuations, as in the standard framework, and the
destabilizing force that shifts probability to the tails and allows the fundamental process to
escape normality. We can allow for a rescaling of the log-fundamental process by a sensitivity
parameter σ < 1, and equation (6) can be written as:

dft = βBdt+ σdWt, (7)

where the Bernoulli variable B now takes values±1, where β = λσ2 is the rescaled risk parameter.

We have identified the source of external exchange rate risk as exogenous changes in investor risk
aversion: we note, however, the process (6) can be used to represent a variety of other sources
of risk and destabilizing forces that cannot be represented reliably by Gaussian fluctuations, as
well as to investigate the implications of such a modeling in a tractable way. In Appendix A
we report alternative reduced form interpretations of λ as a source of destabilizing risk. Fur-
thermore, in this paper we choose to focus on a fundamental process that remains stationary in
distribution around its long-run level, here normalized to 0 without loss of generality. This is
the case for most target zone cases. However, if the fundamental was substantially misaligned
from its long-run level, then the choice of a mean-reverting process could be more appropri-
ate. The analysis of this case is presented in Appendices E and F, where we fully solve both
Ornstein-Uhlenbeck (O-U) and non-Gaussian, softly attractive dynamics. The latter can be of
interest for researchers as an alternative to the O-U process, since it allows one to again escape
Gaussianity and to model an ergodic process with light attraction towards its long-run level,
whilst maintaining analytical tractability.

This also allows us to precisely characterize the interplay of diffusive fluctuations (variance) and
destabilizing forces (risk, via changes in investor risk aversion): the tendency of external risk to
shift the exchange rate away from the mean and towards the bounds of the zone is counteracted
by the central bank’s efforts to maintain the fundamental fluctuating around its mean. This is
precisely what is argued by Lera and Sornette (2015). The standard Gaussian case is a limiting
case for which the risk parameter is zero and there is no change in investor risk aversion. This is
a more realistic characterization of fundamental risk, especially considering the influx of external
risk given by global financial cycles. We show how the solution to the model is made up of two
parts. The first is the time-independent stationary part, which corresponds to the behavior of
the exchange rate at the time of entry in the target zone. The second is the transient part,
which describes the sensitivity of the exchange rate to the distance to the bands, as a function
of risk, band size and time to exit.

4 Target zone exit with a finite time horizon

We study the exchange rate equation derived from (5), which we write as

Xt = ft +
1

α
E {dXt} . (8)

We allow explicitly time-dependent dynamics Xt = X(t, ft), and therefore study non-stationary
behavior. At a fixed time T the spot exchange rate is set to exit the target zone and match
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the target fundamentals. The absolute value of the semi-elasticity of money with the nominal
interest rate, θ, is always greater than unity: we rewrite it in the form 1/α, with 0 < α < 1,
thus interpreting it with the dimension of a frequency (i.e. 1/[time unit]) which modulates the
size of the forward-looking time window.

Using Itô calculus, Eq.(8) can be rewritten as:

∂tX(t, f) +
σ2

2
∂ffX(t, f) + βB∂fX(t, f)− αX(t, f) = −αf. (9)

Note the presence of the additional term ∂tX(f) in Eq.(22) which does not appear when one
focuses only on stationary situations. The solution of (22) can be written as the sum of the
time-independent stationary solution and the transient solution:

X(τ, f) = X∗(τ, f) +XS(f). (10)

Appendix B shows how the stationary solution of (10) is given by:

XS(f) =
1

cosh(βf)
{AY1(f) +BY2(f) + YP (f)} , (11)

where we have: 

Y1(f) = exp
{

+
√[

β2 + 2α
σ2

]
f
}
,

Y2(f) = exp
{
−
√[

β2 + 2α
σ2

]
f
}
,

YP (f) =
2α(f(2α+β2(1−σ2)) cosh(βf)+2βσ2 sinh(βf))

(2α+β2(1−σ2))2

(12)

In Eqs. (11) and (12) the pair of constants A and B can be determined by smooth fitting at the
bounds f = −f :7

∂fXS(f) |f=f = ∂fXS(f) |f=f = 0. (13)

The two constants of integration A and B can be obtained in closed form but their expression
is lengthy and is therefore omitted. An illustration of the stationary solution (11) is presented
in Figure 1, which also shows how an increase in the riskiness β of the fundamental prompts the
(stationary) exchange rate to behave more independently of the dynamics of the fundamental.
At high levels of β, the exchange rate dynamics are driven mostly by the risk and depend less
on fundamentals, especially around the bounds, as represented by the steepening of the central
slope. In this figure, f = 10% and we assume a quasi-daily time step for the expectation α = 0.8.
Our parametrization of α = 0.8 corresponds to a case of fast agent updating, which is similar to
the case studied by Ferreira et al. (2019) and Coibion and Gorodnichenko (2015). Changing the
α to a lower fundamental updating frequency will reduce the sensitivity of the exchange rate to
the fundamentals.

7For simplicity we focus our attention to targets zones symmetric with respect to f = 0, although the results
hold for general bounds. To see this, notice that the general solution is unaffected by the bounds, which enter
the particular solution only via the scalar quantities A and B. We continue using a symmetric band [−f, f ] for
clarity of exposition.
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Figure 1 Effect of varying β on stationary exchange rate dynamics

We now turn to the transient dynamics. At a given time horizon t = T , we fix the predetermined
exchange rateX(T, f) = 0. In terms of the backward time τ = T−t, we write the transformation
X∗(τ, f) = Y ∗(τ, f)/ cosh(βf). The time-dependent partial differential equation we need to solve
is therefore given by:

∂τY
∗(τ, f)− σ2

2
∂ffY

∗(τ, f) +

[
β2

2
+ α

]
Y ∗(τ, f) = 0. (14)

with boundary conditions given by:


[
∂fY

∗(τ, f)− β tanh(βf)Y ∗(τ, f)
]
f=f

= 0,

[
∂fY

∗(τ, f)− β tanh(βf)Y ∗(τ, f)
]
f=f

= 0.

(15)

We express the solution Y (τ, f) as Y ∗(τ, f) = φ(τ)ψ(f), and proceed to solve this equation
by separation of variables and expansion over the basis of a complete set of orthogonal eigen-
functions. Sturm-Liouville theory allows us to state that on the interval [−f,+f ], one has a
complete set of orthogonal eigenfunctions ψk(f) satisfying Eq.(13), namely:

ψk(f) = sin

(√
2Ωk

σ
f

)
∈ [f, f ], k = N+, (16)

where each eigenvalue Ωk solves the transcendental equation:

√
2Ωk

σ
cot

(√
2Ωk

σ
f

)
= β tanh(βf). (17)

Furthermore, the eigenvalues are real and span a discrete spectrum:

{Ωk} :=
{

Ωk(β, f)
}
, k ∈ N+.
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Figure 2 Target band and spectrum

(a) f̄ = 10% (b) f̄ = 20%

Graphical illustration of the solution of equation (17), showing the effect of varying f̄ on the spectrum Ωk.

and can therefore be ordered as:

Ω1(β, f) < Ω2(β, f) < · · · .

For any k ∈ N+, the corresponding Ωk(β, f) solves the transcendental equation (17), and has to
be calculated numerically. For a general β > 0, one observes that the successive eigenvalues are
not evenly spaced, and display a distance which decreases in k. The spectrum is controlled by
the width of the target zone f̄ : the wider the band, the smaller the separation. The spectrum
and its relationship with the target band size are illustrated in Figure 5. Observe also that in
the limit β = 0, one straightforwardly verifies that from Eq.(16) one obtains the evenly spaced
set Ωk(0, f) = (2k + 1) π

2f
.

The development of the non-stationary solution X∗(τ, f) over the complete set {ψk(f)} enables
one to finally write the full expansion as:

X∗(τ, f) = X∗(T − t, f), t ∈ [0, T ]

=
1

cosh(βf)

∞∑
k=1

ck exp
[
−(Ω2

k + ρ)(T − t)
]

sin

[√
2Ωk

σ
f

]
(18)

ck = − 1

f

∫ +f

−f
XS(f) sin

[√
2Ωk

σ
f

]
df

ρ =

[
β2

2
+ α

]
.

The full derivation is reported in Appendix B. When t = T , from Eq.(19), by construction of
the Fourier coefficients ck, we have X∗(0, f) = −XS(f) and so X(T, f) = X∗(0, f) +XS(f) = 0
thus reaching the required fixed parity. An illustration of the non-stationary exchange rate
dynamics, as well as the overall transition dynamics throughout the time interval [0, T ], is
presented in Figure 3. This solution allows one to express the movements of the exchange rate
via a weighted sum of its stationary behavior, its distance to the exit time and the distance
between its value at any time t and the target band. The eigenvalues modulate the frequency
of both fundamental and exchange rate movements within the band. The Fourier coefficients ck
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Figure 3 Non-stationary dynamics

(A)

(B)

This figure shows the evolution of X(T −t, f) of the non-stationary dynamics in the target zone. Panel (A) shows
the behavior of the time-dependent part: we assume a target zone which has been set to T = 3 years, with β = 1

for a given set of fundamentals. For the sake of brevity we truncate the figure towards the end of the target
zone to effectively illustrate the non-stationary dynamics. Panel (B) shows the full dynamics for an increase in
risk. Here we have assumed a target band symmetric around zero, i.e. f̄ = 10% = −f . We also assume α = 0.8.
We truncate the eigenfunction expansion at 50. The second panel illustrates the change in dynamics from β = 0

(Gaussian) to β = 5.
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represent the impact of the size of the target band in the overall dynamics, via their weight on
the infinite series of frequency components (the “harmonics” of the exchange rate path). Loosely
speaking, this formulation of the solution allows one to describe the sensitivity of the exchange
rate to the distance to the target band. Once the eigenvalues and the eigenfunctions are known,
as famously asked by Kac (1966), “if one had perfect pitch”, one would be able to “hear” the
shape of the target zone.8

This formulation of the solution allows us to uncover the unique nature of the smooth-pasting
conditions: the exchange rate process is not reflected at the bounds in the probabilistic sense,
since this would have been modeled as a zero derivative condition on the transition probability
density function. We are in the presence of “soft” boundaries, where the central bank interven-
tions are determined by the interplay of the distance of the exchange rate to the bounds as well
as the tendency of the fundamental to hit them (the risk): this is what is implied by the eigen-
function expansion of the solution. This allows us to “endogenize” the bands: because of the
presence of expectations in the exchange rate equation (22), we have a second-order term which
allows us to solve the equation in its Sturm-Liouville form and eigenfunction expansion. The
Fourier coefficients modulate the sensitivity of the exchange rate to the distance to the band,
allowing for the central bank to intervene whenever the fundamental is “felt” to be approaching
the bounds. This “feeling” is in fact a direct translation of how much the fundamental tends
to escape and how much the central bank needs to intervene marginally or intramarginally:
it is a direct consequence of the presence of expectations in the exchange rate equation. In
other words, the higher the tendency to hit the bounds, the greater is the likelihood that the
central bank will actually intervene intramarginally, with increasingly less weight placed on the
actual position of the fundamental within the band. One can therefore see that the higher is
the risk (the fundamental’s tendency to escape from its central position), the more the central
bank intervenes intramarginally. The same applies when the target band shrinks. The standard
Krugman framework applies when the fundamental is a pure Brownian motion and the central
bank only intervenes marginally. Note that this phenomenon is directly a consequence of our
rigorous characterization of fundamental risk. In Section 7 we show how the model can replicate
the different exchange rate densities under different assumptions of feasibility and intervention.9

It is also worth noting that this framework potentially allows for the existence of de jure and de
facto bands, as noted by Lundbergh and Teräsvirta (2006): if the de jure band is large, expecta-
tions over the magnitude of risk may react to a narrower de facto band. This is a phenomenon
commonly observed in most ERM countries.

5 Risk, target width and feasibility: the role of the spectral gap

Here we discuss the interplay between the risk parameter β, the size of the target band [−f,+f ]
and the feasibility of the time horizon T at which to reach the target zone. We first note
that at the initial time t = 0, from Eq.(19) we have X∗(T, f) ≈ 0 and therefore X(0, f) =
X∗(T, f) +XS(f) ≈ XS(f). Since Ω1(β, f) < Ω2(β, f) < · · · , one can approximately write:

X(T, f) ' XS(f) +O
(
e−(Ω2

1+ρ)T
)
.

8Note that the time-independent part of the problem is a one-dimensional Neumann problem on the boundary
∂D = [f, f ] {

∆f + Ωf = 0

∇f |∂D = 0,

which is exactly the problem of finding the overtones on a vibrating surface.
9For additional information, see Figure 2 in Crespo-Cuaresma et al. (2005)
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While for the exact solution we should have X(T, f) = XS(f), one sees immediately that
X(T − t, f) = XS(f) + X∗(T − t, f) with X∗(T − t, f) given by Eq.(19) nearly matches the
exact solution, provided we have an horizon interval T & trelax where trelax :=

(
Ω2

1 + ρ
)−1 is the

characteristic relaxation time of the exchange rate process. This provides a validity range for
the non-stationary dynamics given by the expansion Eq.(19).

Hence, at time t = 0, the required initial probability XS(f) law is reached only for a large
enough time horizon T & trelax. This now enables us to link the non-stationary dynamics of
X∗(t, f) to the feasibility of the target zone: the relaxation time τrelax determines the minimum
time interval for which a feasible target zone may be maintained. The larger β (the risk of the
fundamental, stemming from larger shifts in agents’ risk aversion), the greater is the tendency of
the fundamental to escape from its mean; the authorities need therefore to maintain the target
zone for a longer minimum duration. An increase in risk, for a given f̄ , implies that the target
zone would have to be set for a longer horizon T to be feasible. Alternatively, for a given risk β,
an increase of the target zone width f , requires a longer minimal T implementation to ensure
the overall feasibility of the policy. In other words, the central bank has to impose that the time
horizon T is at least as large as the relaxation time trelax.

An intuitive interpretation of the relaxation time in this framework is to understand trelax as the
characteristic elapsed time required to “feel” the first effects of the home central bank’s actions
aimed at reducing fluctuations of the exchange rate, compared to a free float. The bank’s
actions may be then viewed as a de facto reduction of the target zone band over time, whilst
the de jure band remains unchanged. A possible implication would be that trelax would be the
minimum time for agents to update their priors accurately, generating self-fulfilling expectations
that create the honeymoon effect.

The inverse of the relaxation time is determined by the spectral gap, which is the distance
between 0 and the smallest eigenvalue. We therefore have the relationship (trelax)−1 = (Ω2

1 + ρ).
The spectral gap controls the asymptotic time behaviour of the expansion given by (19), and it
is continuously dependent on risk β and band f̄ . This relationship is illustrated in Figure 4.

Figure 4 Interaction between β and f

Note: This figure shows the interaction of varying risk (β) and varying the band size (f). An increase in risk, for
a given f , implies that the lowest eigenvalue Ω1 falls (Panel (A)). The inverse of this value controls the trelax.

Let us now study analytically the behaviour of the solution Ω1 of the transcendental Eq.(17).
Writing z =

√
2Ω1f , Eq.(17) implies that the product βf is the determinant of the amplitude of
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Ω1. An elementary graphical analysis enables one to conclude that two limiting situations can
be reached:


βf << 1 ⇒ z . π

2 ⇒ Ω1 . π
2f

⇒ t−1
relax .

[
π
2f

]2
+ β2

2 + α,

βf >> 1 ⇒ z & π ⇒ Ω1 & π
f

⇒ t−1
relax &

[
π
f

]2
+ β2

2 + α.

and therefore:

1[
π
f

]2
+ β2

2 + α
≤ trelax ≤

1[
π
2f

]2
+ β2

2 + α
. (19)

Eq.(19), together with Figure 4 shows how an increase in risk β affects trelax more strongly when
the exchange rate is allowed to float in a wider band width f̄ .

6 Risk, target band and regime shifts

Figure 5 Risk, target band and regime shifts

(a) f̄ = 2% (b) f̄ = 15%

Regime shift and eigenvalue jump as a function of risk, for different target bands

An unique phenomenon that emerges when considering non-converging drifts, and in particular
our specification, is the emergence of a regime shift. Figure 5(b) shows that for a large enough
target band, after a threshold level in β, the relaxation time suddenly jumps to a much lower
value and remains almost constant (though very slowly increasing) for further increases in risk.
This effect happens because when the tendency β of the noise source driving the fundamental
reaches and surpasses a certain level, the destabilizing risk component in the noise source over-
comes the diffusion. The force βB in the mean-preserving spread becomes the main driver of the
stochastic process driving the fundamental, and therefore ft becomes a process with a tendency
to escape from its mean that is stronger than the tendency to diffuse around its central value.
While this may look like a sudden emergence of supercredibility, it is in fact the opposite: the
target zone cannot be feasibly held. This implies that the fundamental process escapes its initial
position with such force that it hits the band at every dt, and interventions become almost con-
tinuous. Furthermore, smooth-pasting conditions cannot be applied anymore. The central bank
will have to either increase the size of the band or to allow the spot rate to float freely. This
has a direct implication for honeymoon effects: Appendix C shows how, after a threshold level
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of risk has been surpassed, the smooth fitting procedure at the boundaries cannot be applied,
and hence honeymoon effects when the fundamental approaches the band become unobtainable.
This implies that a high level of risk denies a central bank monetary autonomy up until the
moment of entering the currency zone. This phenomenon is illustrated in Figure 6.

Consider now the smooth-pasting conditions (15): one can separate the contribution of the
eigenfunction to the one given by the probability spread and obtain:

∂f sin
(√

2Ωk
σ ft

)
sin
(√

2Ωk
σ ft

) − β tanh(βft) = 0

m
∂fEIG(Ωk, ft)

EIG(Ωk, ft)
− MPS(β, ft) = 0. (20)

The first term is a total sensitivity term, closely related to the elasticity of the eigenfunction
with respect to the fundamental, and it represents the overall variation of the exchange rate
with the fundamental. The second term represents the increase in risk, as well as the desta-
bilizing component that represents the tendency of the fundamental to hit the target bands.
The solution of this equation yields the spectrum {Ωk}, for k = N+. The difference of the two
terms represents the residual tendency of the home country fundamental to avoid converging to
the target fundamental. The spectral gap, therefore, represents the intensity of the probability
spread. The regime shift will happen at a threshold value βe, only obtainable numerically, for
which the spectral gap will suddenly jump upwards: the destabilizing force has dominated over
the diffusive part and the first eigenvalue jumps higher. The oscillating part of the expansion
increases in frequency, and the time-dependent exponential decay increases in speed. A graphi-
cal illustration is shown in Figure 7: one can easily show that the lower bound for the threshold
βe is given by 1/f̄ . This allows one to uncover the close relationship between the regime shift
and the size of the target band. This regime shift cannot occur with a Gaussian process or
with mean-reverting dynamics.

Figure 6 Risk threshold, distance to the bands and honeymoon effects

(a) β > βe. No honeymoon effects (b) β < βe.

Large risk shocks vs. diffusion-driven regimes

In the diffusion-driven regime (characterised by a relatively low β < 1/f), one observes that an
increase of risk implies a decrease in sensitivity, since trelax is increasing. This may seem coun-
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terintuitive: but it must be remembered that at time t = 0, the initial condition is the stationary
solution of the central bank-controlled diffusion for the given risk. Increasing β, therefore, is
likely to load the stationary probability mass accumulated in the vicinity of the target zone
boundaries. Escape from this stationary state by bank action becomes more difficult, ultimately
leading to an increase of trelax. Conversely, in high risk regimes where β > 1/f and where the
destabilizing dynamics dominate, the boundaries of the target zone are systematically hit by the
fundamental. In this situation, the central bank will intervene almost entirely intramarginally
regardless of whether the fundamental is actually close to the bands, since honeymoon effects
cannot exist anymore. This allows, in Eq.(12), for a sudden reduction of the probability mass
located at the bounds, and this generates the sharp drop of trelax. In other words, the band
implicitly ceases to exist and the central bank operates effectively in an infinitesimally narrow
band. This provides new insight into target zone feasibility: if risk is too high, exchange rate
expectations are no longer anchored to the band and the effectiveness of central bank interven-
tion is greatly reduced. What the central bank could do is therefore either (i) to reduce risk,
which in practice is often infeasible, or (ii) to increase the size of the target zone which itself is
bounded by the free-float exchange rate volatility. The new size of the band would have to be
large enough for this new target zone to be “heard”.

Figure 7 Risk and eigenvalue jump

Note: Regime change For β = 15. The force β tanh(βf) (black curve) overcomes the diffusion component and
generates the first eigenvalue jump. For β = 6 (red curve), the regime has not yet shifted. Here f̄ = 0.1,
σ = 1, α = 0.8.

We can therefore also connect the threshold βe at which the regime shift occurs to complete
factor market integration: for lower levels of β, the home fundamental exhibits an idiosyncratic
component anchored to its original dynamics that is stronger than its tendency to converge
to the target fundamental. Once this component is overcome, the target zone ceases to exist
and the currency starts floating. This may also help explain why countries with a high level of
capital integration with the target currency may have higher costs in maintaining a target zone.
One implication of the suddenness of the regime shift is that the relationship between capital
integration and the duration of the target zone is non-monotonic. This is precisely what Lera
and Sornette (2015) illustrate with the case of the Swiss Franc floor between 2011-2015.

7 Numerical simulations

We simulate central bank intervention by means of a symmetrized Euler scheme for stochastic
differential equations. Since the original problem is a one-dimensional Neumann problem on the
boundary ∂D = [−f̄ , f̄ ], the regulated SDE can be written as:
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ft =

∫ t

0
b(fs)ds+ σ

∫ t

0
dWs +

∫ t

0
γ(fs)ds,

where b(fs) is the nonlinear drift and γ(.) is the oblique reflection of the process on the boundary
∂D. This is the equivalent of the interventions, and we assume that for the unit vector field γ
there exists a constant c so that γ(x) ·~n(x) ≥ c for all points x on the boundary D. This can be
interpreted as assuming bounded interventions. We use a regular mesh [0, T ] for the numerical
simulation, for which the weak error is of order 0.5 when the reflection is normal (i.e. γ = ~n),
which is our case. We choose this method in order to obtain consistent Monte Carlo simulation
of the resulting densities. The algorithm starts with f0 = 0 and for any time ti for which fti ∈ D
we have for t ∈ ∆t = ti+1 − ti that:

FN,it = fNti + b̂(fNti )(t− ti) + σ(Wt −Wti),

as in the standard Euler-Maruyama scheme, and the nonlinear drift b(.) is approximated with a
second-order stochastic Runge-Kutta method. If FN,it+1 /∈ ∂D, then we set:

fNt+1 = πγ∂D(FN,it+1)− γ(FN,it+1),

where π∂D(x) is the projection of x on the boundary ∂D parallel to the intervention γ. If
FN,it+1 ∈ ∂D, then obviously fNt+1 = FN,it+1. For more references, see Bossy et al. (2004). The
exchange rate path is then obtained simply by setting XN

t = X∗(fNt , T − t) for every t ∈ [0, T ].
It is of fundamental importance to set ∆t equal to the update ratio given by 1/α in our model,
so that the increment of the simulated exchange rate path has the same updating time frequency
as the central bank. We can now discuss two kinds of interventions: the kind that intervenes by
reflecting the process so that it just stays within the band (sometimes called “leaning against the
wind”), and the pure reflection variety, which projects the fundamental process by an amount
equivalent to how much the process would have surpassed the boundary. This distinction can
also be understood as the amount of reserves the central bank has at its disposal in order
to stabilize the fundamental process: the greater this quantity, the more likely it is that the
intervention will be of the pure reflection type. We also assume that an intervention is effective
instantaneously. This distinction also has important implications in the resulting exchange rate
density: as shown in Figure 6, given our characterization of risk, the greater the β, the earlier
the central bank will have to intervene, given the fundamental’s increased tendency to escape
towards the bands. We present five possible scenarios by estimating Monte Carlo densities of the
simulated exchange rate process: the first two correspond to the Gaussian case, where β = 0 with
each of the two intervention strategies. The densities are obtained by Monte Carlo simulation
of N sample paths, binning the data and limiting the bin size to zero to obtain the convolution
density, then averaging over the N realizations and interpolating the resulting points. For all
figures N is set to 5000, σ = 0.1, r = 0.5, α = 200, T = 3 and the exchange rate target band
to ±10%. For more references on the method, see Asmussen and Glynn (2007). We obtain
a realization path for each of the two and obtain both U-shaped (corresponding to the base
Krugman case) and hump-shaped densities, corresponding to the Dumas and Delgado (1992)
framework. The realized densities are plotted in Figure 8. We then simulate the case in which
β > 0 but is not large enough to trigger the regime shift, each one with a different intervention
strategy: in the marginal intervention case we obtain the two-regime density (β = 5), as in the
Bessec (2003) framework, and in the intramarginal one we obtain a hump-shaped distribution
as for all intramarginal intervention frameworks. These results are shown in Figure 9. Note
that this is a consequence of our characterization of risk: the tendency β of the fundamental
to hit the boundary generates the two-regime shape, since even in a marginal framework the
central bank will already intervene when at a distance from the bands. Furthermore, this is
the case in which de facto bands start to appear. Finally, we present a case in which β is large
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enough (β = 50) to trigger the regime shift, and the band in fact ceases to exist: the tendency to
escape leads to the fundamental process constantly surpassing the boundary, honeymoon effects
are impossible and pure reflection intervention concentrates most of the realizations around the
initial level. This, as N → ∞, generates a Dirac delta function around the initial value of the
fundamental. This is displayed in Figure 10.

Figure 8 Exchange rate densities, β = 0

(a) Marginal intervention, LAW (b) Intramarginal intervention, pure reflection

Figure 9 Exchange rate densities, β > 0, β < βe

(a) Intramarginal intervention, LAW (b) Two-regime intervention, pure reflection

Figure 10 Exchange rate densities, β > βe,

Target band too narrow given the level of underlying risk.

8 Policy implications

A target zone with a terminal exit time to another currency has two objectives. First, the central
bank wants to limit the volatility of its exchange rate (Xt) versus the anchor currency below the
free float level of the anchor currency (Zt). This provides us with a natural limiting condition
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to the size of the band that the central bank can set:

|f | ≤ σz.

This essentially means that the band size of ERM-II of ±15% will never be breached if the
central bank of the target zone currency pegs to the Euro, as the Euro itself has an annualised
volatility versus other major currencies in the range of 7-10%. Second, the central bank needs
its target-zone to be considered feasible, in order to enjoy “honeymoon effects”, which in turn
reduces the cost of intervention for achieving the set parity. In our setup, we propose the
concept of a characteristic relaxation time τrelax which determines the minimum time a target
zone must be maintained to “feel” the first effects of the home country central bank’s actions
aimed at reducing fluctuations of the exchange rate, compared to a free float.10 This allows us
to interpret τrelax as the minimum time for agents to update their previously held exchange rate
expectations, generating self-fulfilling expectations that create the honeymoon effect.

This does not mean that a central bank cannot adopt a target currency overnight with an
arbitrary parity being the close of day value of the target exchange rate. In such a case, agents
would not have had time to update their expectations and this would force the central bank to
use a larger proportion of its assets (in the target currency) defending the parity level. This
opens up many different avenues of enquiry into the expectation generation process of agents in
foreign exchange markets. If trelax is the minimum time for agents to update their previously held
exchange rate expectations, this means that greater shifts in higher degree of agent risk-aversion
(higher β) will increase trelax. As shown by Osler (1995) and Lin (2008), this effect would work
through the feasibility of the target zone in time shifting speculators’ horizons towards short
term speculation, where tspeculation ≤ trelax. This is a natural outcome of “honeymoon effects”
which make intervention cheaper for central banks and harder for speculators after trelax.

We find that trelax is increasing with the magnitude of the risk aversion shifts, for β ≤ βe.
Moreover, the target band size is also increasing in shifts size for β ≤ βe up to|f | ≤ σz.

New relevance for our framework has emerged in a recent development for the Economic Com-
munity of West African States (ECOWAS) as well as for new entrants in to ERM-II target zone.
ECOWAS is planning to replace the current West African CFA Franc with a common currency,
named Eco. The goal is for the 15 states to transition to the Eco via a target zone mechanism,
similar to the ERM-II. Currently the CFA Franc is pegged to the Euro, with operational man-
agement shared between the Bank of France and the local central banks. After the reform, these
countries would have to manage their own exchange rate targets without any outside support.
The main political reason is understandable, and lies primarily in the severing of the ties with
the former colonial ruler, France. The issues with this process, however, are multifaceted, and
one of the main concerns is the short time horizon proposed for the target zone mechanism (one
year). Moreover, there may be additional risk stemming from not allowing the ECB to have
operational risk-sharing in the process, as well as the inherent risk faced by individual West
African central banks. This translates directly to our framework, where the risk factor β may
generate a relaxation time trelax for individual states that may be larger than the proposed con-
vergence time T . This could have potentially devastating consequences for the credibility of the
participating central banks, and for the overall process of creating the new common currency.
The inability of some ECOWAS countries to achieve the convergence criteria would make the
adoption of the ECO impossible in the near future.

On the other hand, Bulgaria and Croatia officially entered ERM-II to replace their national
currencies with the Euro in July 2020. The minimum convergence time T to exit to the Euro

10The bank’s actions may be then viewed as a de facto reduction of the target zone band over time, whilst the
de jure band remains unchanged.
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is set at two years. Both the Lev and the Kuna have successfully pegged their currencies to the
Euro over the last decade and may be considered as low β countries at the time of their entry
into ERM-II. However, in with Fornaro (2020)’s predictions, the accession of these countries to
the Euro will be followed by an upgrade in the country ratings for foreign currency debt.11 These
ratings upgrade at the time of the Covid-19 pandemic generates a higher probability of a capital
flow surge and consequently a higher probability of a sudden stop into these countries. While
capital flows might help with financing additional debt during the pandemic for these countries,
it also generates a risk of these countries not meeting their fiscal criteria as well as destabilising
the inflation expectations convergence process. It is highly unlikely given ECB support to the
ERM process that these countries will not be able to successfully adopt the Euro. However,
Lithuania’s experience in adopting the Euro provides a useful benchmark. These countries do
run the risk of missing their fiscal and inflation criteria given the combination of push and pull
factors, which are likely to generate high capital flows. If this risk materialises, this would imply
that the Lev and the Kuna may have to wait in the ERM-II for a longer time than originally
expected. This uncertainty is not as destabilising as in the case of the Eco, given ECB support.
Nevertheless, there may be political consequences with support of the new currency if the ERM-
II process goes on for longer than expected. An important future contribution of our work
would be the structural estimation of the model parameters and an explicit computation of the
relaxation time, thus effectively providing a lower bound for the necessary time for each country
to reach the desired parity.

9 Conclusions

In this paper we have explored the implications of extending exchange rate target zone modeling
to non-stationary dynamics and heavy, non-Gaussian tails stemming from time-varying investor
risk aversion, which lead to mean-preserving risk increases in the fundamental distribution. Our
framework leads to a natural interpretation of target zone feasibility, driven by the interplay
between two contrasting forces: a destabilizing effect driven by risk which pushes the exchange
rate towards the bands, and a stabilizing diffusive force.

Our model does not deal with optimal choices: indeed, the only choice variable potentially
available to the authorities is the time horizon T by which the required parity needs to obtain.
As such, from the policy perspective our model poses what is essentially a screening problem
in the informational sense: in a worst case scenario, it is likely that neither of the two central
banks knows the true riskiness of the fundamental process. If one chooses an exit time which
is lower than the required minimum time at which parity can be reached (the relaxation time),
the target zone exit time is not feasible. However, setting a T which is too high exposes one to
increased business cycle risks, the dampening of which were a likely reason for entering a target
zone in the first place. We show how our model effectively endogenizes the presence of the bands
by the exchange rate expectations, and how the interplay between risk and target band has key
implications in the credibility of the zone itself, as well as the possibility of honeymoon effects.
Intervention is shown to be both marginal and intramarginal, depending on how much the central
bank “hears” the distance to the target zone band. The potential emergence of regime shifts,
furthermore, can further erode the target zone credibility. This allows the methods employed in
this paper to be applied to a wide range of situations. An important future contribution of our
work would be the structural estimation of the model parameters and an explicit computation of
the relaxation time, thus effectively providing a lower bound for the necessary time for a country
to reach the desired parity.

11See https://tinyurl.com/yyg4wp9p and https://tinyurl.com/yyuxm3tr for more details on the potential
for ratings upgrades due to ERM-II
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Appendices

A Alternative interpretations of risk

Figure 11 Estimated densities of the fundamental process (inflation expectations) for ERM-II
currencies
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(Left panel) Centered difference between Euro area inflation expectations and target zone country inflation
expectations, for the time each currency was in the target zone with the Euro. Kolmogorov-Smirnov tests greatly
reject each hypothesis of Gaussianity. The data for inflation expectations comes from the Euro Commission’s
Joint Harmonised Consumer Survey. For more details we refer to Arioli et al. (2017). Bulgaria and Croatia have
only recently acceded to joining the Euro and the data for them is backward-looking to give the reader a sense
of pre-target zone differences in inflation expectations. (Right panel) Transition densities of the fundamental
process with mean-preserving spreads at time t = 1, each with risk increases in the direction of the arrow.

Destabilization is intrinsically connected to risk in the fundamental process. Besides the structural in-
terpretation of risk as stemming from time-varying investor risk aversion, one could think of a variety of
other interpretations for the parameter λ of increasing risk, which generates mean-preserving spreads in
the density of the exchange rate fundamentals. A quick glance at the left-hand panel of Figure 11 shows
that the difference in inflation expectations, one of the key fundamentals in the determination of exchange
rate target zones, is undoubtedly non-Gaussian, exhibits substantially heavier tails and presents bimodal
tendencies stemming from both inflationary and deflationary pressures shifting probability away from
the center. Such risk dynamics cannot be represented by the variance of Gaussian fluctuations, as they
cannot affect the distribution tails, but rather requires the presence of forces that increase the tendency
of the fundamental process to escape its long-run level. The right panel of Figure 11 shows the transition
density of the DMPS process at an arbitrary time for increasing risk. The DMPS density with λ parame-
ter fit by maximum likelhood is a better fit for the empirical densities for each of the densities shown in 11.

Another way of interpreting of the risk parameter of our framework could be via the presence of capital
flows, especially in how the magnitude and the drivers of capital flows matter in determining the stabili-
sation effects. First, capital flows may be driven by push factors creating cycles of bonanzas and sudden
stops seen with New Member States. Hansson and Randveer (2013) argue that capital flow dynamics
were the key driver for cyclical developments in the Baltic ERM economies. This is might be a issue
for a small target zone country if the capital flows generate excess appreciation or depreciation pressure
weakening the feasibility of the targetrep zone. This is particularly problematic if there is a sudden stop
with reallocation of capital flows to more productive economies in the target zone as seen during the
Eurozone crisis (Ghosh et al., 2020). Furthermore, assuming absence of macro-prudential tools, capital
flow volatility may generate foreign exchange intervention volatility inside the target zone, as the use of
interest rates as a monetary policy tool can generate further pro-cyclicality in capital flows. This nexus
between capital flows and target zone management may destabilise the convergence in the inflation pro-
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cess of the target zone country. This is the key source of additional risk in our setting. Let’s consider
the real interest rate version of the UIP condition:

E {dXt} = (rt − r∗t )dt+ E {dπt − dπ∗t } ,

where π∗ is the target country’s inflation measure and π is home inflation. If there are high capital
inflows that need to be counteracted by (unsterilised) intervention, this would generate a lower real
interest rate of financing by putting downward pressure on rt. This additional supply of credit is likely
to increase the E {dπt} This would require an interest rate response by the national central bank, in
the absence of macro-prudential tools. We can see that in this particular case, increasing interest rates
may be pro-cyclical to capital flows as long as the inflation process responds positively to the interest
rate hike, causing a loss of monetary autonomy if the process is self-reinforcing. A destabilizing out-
come of this setting would be if the inflation process does not respond to the interest rate moves and
causes an outflow of capital flows. This would jeopardise the feasibility of the target zone and could
cause the gap between rt and r∗t to become larger than before entering the target zone. The standard
approach of modeling risk in the target zone does not consider the risk stemming from the currency
union itself. If the target currency union has real interest rate changes through lower expected inflation
surprises, it will also affect the stability of target zone by the capital flow mechanism we have described.12

This shows that one cannot conflate all information pertaining to risk with the variance parameter of
the Gaussian distribution. We therefore adopt a definition of risk which corresponds to the concept of
a mean-preserving increase in risk, in the second-order stochastic dominance sense, often referred to as
a mean-preserving spread. Risk forces are by construction characterized by a second-order stochastic
dominance criterion, and therefore must leave the long-run level unchanged. We therefore need to
characterize such forces as mean-preserving increases in risk. This concept was introduced in a static
setting in the seminal contributions of Rothschild and Stiglitz (1970 and 1971), who define two sufficient
integral conditions that allow one to unambiguously rank distributions in terms of their riskiness, and
extended to a dynamic setting by Arcand et al. (2020). This rigorous characterisation of risk is not
considered by the extant target zone literature. Lastly, we note that our characterization of risk as
destabilizations caused by capital flows can be further extended to any source of external risk, and our
model framework would still apply.

B Derivations of the stationary and transient equations
For the derivation of the stationary solution, we first introduce the following integral transformation:

X(t, f) =

∫ f

cosh(βζ)Y (t, ζ)dζ ⇐⇒ ∂fX(t, f) = cosh(βf)Y (t, f), (21)

which is Darboux-type functional transformation. As shown in Arcand et al. (2020), Eq.(22) can be
written equivalently as

∂tX(t, f) +
σ2

2
∂ffX(t, f) + β tanh(βf)∂fX(t, f)− αX(t, f) = −αf. (22)

which leads to:

∂tY (t, f) +
σ2

2
∂ffY (t, f)−

[
β2

2
+ α

]
Y (t, f) = −αf cosh(βf). (23)

Setting ∂t = 0 one obtains a nonlinear ODE in f which has the closed form solution as given by (12),
which is the sum of the general solution (two opposite-sided exponentials) and a particular solution.
Inverting the transformation back to X one obtains (11).

12For simplicity, we do not consider the currency union having positive inflation surprises, even though in a
low real interest rate setting, it may lead to capital flows to the target zone currency. This mechanism can
be amplified by presence of multiple currencies in the target zone with cross-currency constraints on movement
versus the target currency (Serrat, 2000).
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For the transient dynamics, we need to solve the following equation:

 ∂τX(τ, f)− σ2

2 ∂ffX(τ, f)− β tanh(βf)∂fX(τ, f) + αX(τ, f) = +αf,

X(0, f) = 0.

(24)

Writing X(τ, f) = X∗(τ, f) +XS(f), Eq.(24) implies:

 −
σ2

2 ∂ffXS(f)− β tanh(βf)∂fXS(f) + αXS(f) = +αf,

∂τX
∗(τ, f)− σ2

2 ∂ffX
∗(τ, f)− β tanh(βf)∂fX

∗(τ, (f) + αX∗(τ, f) = 0.

(25)

While the first line in Eq.(25) has already being solved in Eq.(11), the second line needs now to be
discussed. Writing again X∗(τ, f) cosh(βf) := Y ∗(τ, f), we obtain:

∂τY
∗(τ, f)− σ2

2
∂ffY

∗(τ, f) +

[
β2

2
+ α

]
Y ∗(τ, f) = 0. (26)

The smooth-pasting conditions given by Eq.(13) imposes:


∂fX

∗(τ, f) |f=f= 0 ⇒ {[∂fY ∗(τ, f)]− β tanh(βf)Y ∗(τ, f)} |f=f= 0,

∂fX
∗(τ, f) |f=f= 0 ⇒ {[∂fY ∗(τ, f)]− β tanh(βf)Y ∗(τ, f)} |f=f= 0.

(27)

We solve (26) by separation of variables and expansion over the basis of a complete set of orthogonal
eigenfunctions. The solution can be expressed as Y ∗(τ, f) = φ(τ)ψ(f), and therefore we can write it as

φ̇(τ)

φ(τ)
= λk =

σ2

2

ψ′′(f)

ψ(f)
− ρ

where ρ =
[
β2

2 + α
]
.

The time-dependent part solves to ψ(τ) = exp(τλk), and the fundamental-dependent part can be written
as

ψ′′(f)− 2(λk + ρ)ψ(f) = ψ′′(f) + 2
Ω2
k

σ2
ψ(f) = 0.

The rest of the derivations follow straightforwardly, solving for ψ and obtaining the eigenfunctions

ψk(f) = c1 cos

(√
2

Ωk
σ
ft

)
+ c2 sin

(√
2

Ωk
σ
ft

)
.

which form an orthogonal basis for the space of 2f̄ well-behaving functions. Smooth-pasting conditions
impose c1 = 0, c2 = 1 and we obtain the form of the eigenfunctions as given by (16). The Fourier
coefficients follow in their standard form, using the stationary equation XS(ft).

C Risk, regime shifts and honeymoon effects
We now briefly discuss the connection between risk and the honeymoon effect, and how such effects
cannot be be obtained when the destabilizing effects of risk shocks in the fundamental are too strong.
For illustrative purposes, let us consider a baseline case of our model in a symmetric band [−f, f ] around
the parity 0, and let us compare the DMPS-driven model with the standard Gaussian one. Omitting
time dependency, we have again the framework given by
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X = f +
1

α

E {dX}
dt

,

which leads to the following couple of PDEs, depending on the form of the fundamental process.{
X = f + 1

2∂ff [X(f)] (Gaussian),

X = f + 1
2∂ff [X(f)] + β tanh(βf)∂f [X(f)] (DMPS).

We now focus on the stationary regime for which get the general solutions:{
X(f) = f +A0 sinh(ρ0f), (Gaussian),

X(f) = f +Aβ
sinh(ρβf)
cosh(βf) , (DMPS),

where ρβ =
√
β2 + 4α and Aβ is a yet undetermined amplitude. We now apply the smooth fitting

procedure at the target level +f̄13.

For the standard Gaussian framework we have X(f) 7→ X0(f) = f + a sinh(ρ0f), since β = 0 and

consequently ρ 7→ ρ0 :=
√

2α
σ2 . We therefore have :

X0(f) = a tanh(ρ0f) + f, ρ0 =

√
2α

σ2
,

which is the same result as in the standard Gaussian models. In particular, denote W the contact point
with the target boundary ±f̄ , we have

 f̄ = X0(W ) ⇒ F = W + a tanh(ρ0W ),

0 = 1 + ρ0a cosh(ρ0W ) (smooth fitting at positionW ).
(28)

From the second line in Eq.(28), we conclude immediately that:

a =
−1

ρ0 cosh(ρ0W )
.

and accordingly, we end with:

X0(f) = f − sinh(ρ0f)

ρ0 cosh(ρ0W )
(29)

Furthermore, we can verify that W ∈ R+ for all values of the parameter ρ0 > 0. Eq.(29) implies that:

W − F =
tanh(ρ0W )

ρ0
.

It’s immediately seen that the last equation always possesses a single solution W > 0. Let us now
examine the paper’s main framework, the case where β > 0. In this case, for a target zone with band
size F and a smooth contact point W , we have:


F = W + a sinh(ρW )

cosh(βW ) + ω tanh(βW )

0 = 1 + a
cosh(βW ) [ρ cosh(ρW )− β sinh(ρW ) tanh(βW )] + ωβ

cosh2(βW )
.

(30)

The second line of the last equation implies:

13Due to the symmetry, we have here only one amplitudeA to determine since only one boundary needs to be
considered.
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a = − cosh2(βW ) + βω

cosh(βW ) cosh(ρW ) [ρ tanh(ρW )− β tanh(βW )]︸ ︷︷ ︸
:=∆

.

From the last line, let us consider the equation ∆ = 0. First we remember from the very definition that
ρ ≥ β and hence the equation:

ρ

β
tanh(ρW ) = tan(βW ) ⇔ ∆ = 0.

Since ρ
β > 1 the las equation has necessary a solution which is denoted ±Wc. Note in addition that for

a couple of β such that β1 < β2, we have:

β1 > β2 ⇔ Wc,1 < Wc,2 (31)

and for β →∞, we shall have Wc → 0. Now from W solving the first line of Eq.(30), we may have the
alternatives:

a) Wc < W,

b) Wc ≥W.
(32)

For case a), standard boundary techniques cannot be applied as in the Gaussian case, and hence the
limit W = Wc explains the regime transition observed in the spectrum. This is due to the fact that for
large β the honeymoon effect range becomes effectively large enough to preclude the possible existence
of a target zone.

D Noise sources driving the fundamental
Let us now assume that the fundamental is driven by a couple of noise sources, namely i) composite
shocks vt and ii) fluctuations in the money supply mt, given by Gaussian noise around a drift µ. We
therefore add another source of noise, but we are not necessarily increasing the risk in the fundamental
process. We then have

 dft = σ1dW1,t + dmt,

dmt = µdt+ σ2dW2,t, mt=0 = m0.
(33)

where the noise sources dW1,t and dW2,t are two independent White Gaussian Noise (WGN) processes.
We then obtain ft as a Gaussian process, since trivially

dft = µdt+
√
σ2

1 + σ2
2dWt

and we are exactly in the standard framework (in the literature usually µ = 0), only with a change in
variance. If however we wish to incorporate a general increase in risk, and one that may represent the
force that was discussed in Section 2, we can write the following more general framework:

 dft = σ1dW1,t + dmt,

dzβ,t = ζ(β; zt)dt+ σ2(β)dW2,t, zt=0 = 0.

where β ≥ 0 is a control parameter and the repulsive drift ζ(β; z) = −ζ(β;−z) < 0 models an extra risk
source via a dynamic zero mean process. We parametrize risk with β, and therefore β = 0 simply implies
σ2(β) = ζ(0; zt) = 0 implying that the process is Gaussian and driven entirely by the composite shock
process. Our candidate for ζ is the DMPS process:
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dft = σ1dW1,t + dzt = β tanh(βzt)dt+ σ1dW1,t + σ2(β)dW2,t

⇓

dzt = β tanh(βzt)dt+
[√

σ2
1 + σ2

2(β)
]
dWt, zt=0 = 0.

where we used the fact that the difference between two independent WGN’s is again a WGN with variance
as given in the previous equation. Alternatively one may formally write:

dft = σ1dW1,t + β tanh

β zt︷ ︸︸ ︷
(ft − σ1W1,t)

 dt+ σ2(β)dW2,t =

β tanh

β zt︷ ︸︸ ︷
(ft − σ1W1,t)

 dt+
[√

σ2
1 + σ2

2(β)
]
dWt,

Using the initial equation (8) and the previous equation and applying Itô’s lemma to the functional
X(ft, t), we obtain:

(1−r)
α

∂tX(f, t) + ∂fX(f, t)E {β tanh [β(ft − σ1W1,t]}︸ ︷︷ ︸
=β tanh[β(f)]

+
[
σ2

1 + σ2
2(β)

]
∂ffX(f, t)

 =

Xt − r ft

(34)

In the last Eq.(34), the under-brace equality follows since all odd moments in the expansion of the
hyperbolic tangent vanish and the tanh(x) is itself an odd function. Now, normalizing as to have[
σ2

1 + σ2
2(β)

]
= 1, we are in the nominal setting of our paper.

E Attracting drift: mean-reverting dynamics
A fully similar discussion can be done for mean-reverting fundamental dynamics (Ornstein-Uhlenbeck
dynamics) reflected inside an interval [f, f ]. In this section, the fundamental is driven by the mean-
reverting dynamics:

df = λ(µ− f)dt+ σdWt,

where µ is the “long-run” level of the fundamental, and λ is now the speed of convergence, to highlight
the mean-reverting equivalent of the DMPS process. Following the previous exposition, we can obtain
the full solution for the exchange rate X∗(t, f) as the solution of

∂tX +
σ2

2
∂ffX + λ(µ− f)∂fX −

α

1− r
X = − rα

1− r
f.

As before, we have the stationary solution for a vanishing ∂t, and here it reads

XS(f) = A 1F1

[
α

2λ(1− r)
,

1

2
;
λ

σ2
(f − µ)2

]
+

+ B

√
λ

σ
(f − µ) 1F1

[
α

2λ(1− r)
+

1

2
,

3

2
;
λ

σ2
(f − µ)2

]
+

+

[
λµ(1− r)f + rα

λ(1− r) + α

]
(35)

where 1F1[a, b;x] is the confluent hypergeometric function. The integration constants A and B, as before,
are determined via smooth pasting at the target zone boundaries, namely: ∂XS(f)|f=f = ∂XS(f)|f=f̄ =
0. Note that if µ = 0, then A = 0. Figure 12 shows the stationary dynamics of the exchange rate as
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Figure 12 Mean-Reverting Stationary Dynamics

function of the fundamental, for different values of long-run level µ and noise variance σ. The band is
assumed symmetric around 0, and f̄ = 10%.

The associated Sturm-Liouville equation is now given by

σ2

2
∂ffX + λ(µ− f)∂fX + ρX = 0,

where ρ = α
1−r , and the spectrum of the process can be obtained explicitly by solving a transcendental

equation involving Weber parabolic cylinder functions. As before, the complete solution is given by an
expansion on a complete set of orthogonal functions on the target band, namely:

X∗(T − t, f) = XS(f) +

∞∑
k=1

ck exp[−(Ωk + ρ)(T − t)]ψ(Ωk, f),

where the Fourier coefficients ck again impose the terminal condition X∗(0, f) = −XS(f). As worked
out by Linetsky (2005) explicit though lengthy closed form expressions are obtainable (see Eqs.(39) and
(40). For the case of a symmetric target zone f = −f , an approximation valid for large eigenvalues Ωk,
(i.e. large k’s) is given in [L] and reads:

Ωk =
k2πσ2

8f
2 +

λ

2
+ c0 +O

(
1

k2

)
c0 =

λ2

6σ2
(4f̄2 − 6f̄µ+ 3µ2). (36)

The normalised eigenfunctions, also up to O
(

1
k2

)
, read:

ψk(f) = ± σ√
2
f̄−1/2 exp

[
λ(f − µ)2

2σ2

] [
cos

(
kπf

2f̄

)
+

2f̄

kπσ2
φ(f) sin

(
kπf

2f̄

)]
φ(f) =

λ2

6σ2
f3 − λ2µ

2σ2
f2 −

[
λ

2

(√
2λ

σ
µ+ 1 + c0

)]
f + θµ (37)

While strictly speaking Eq.(36) furnishes very good estimates for large k values, a closer look in [L] shows
that even for low k’s, (k = 1, 2, · · · ), pretty good approximations are also obtainable. In particular, for
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k = 1, we approximately have:

τrelax ' [Ω1]
−1

=

[
πσ2

8f
2 +

λ

2
+ c0

]−1

.

For this mean-reverting dynamics, the interplay between risk (here solely due to the noise source variance
σ2) and the target band width 2f on trelax is opposite compared to the DMPS dynamics of section 2.

The tendency of the fundamental f to revert to its long-run level µ, for a narrow target band, generates
an effect of an increase in risk (variance) that is opposite of the one generated by an increase of β in the
DMPS setting, because of the latter’s tendency to escape from the mean. If the band is larger, lower
levels of σ initially increase the relaxation time, to ultimately achieving a decreasing effect. In both
cases, an increase in the size of the target band requires a higher T in order for the target zone to be
feasible.

We lastly notice that for the O-U case, zero is always the first eigenvalue (not surprising, given that it’s
an ergodic process) and a regime shift cannot be possible.

F Alternative to O-U dynamics: softly attractive drift
We now present the model where we model the fundamental as an ergodic process with a softly attractive
drift instead of the Ornstein-Uhlenbeck dynamics. This framework has the advantage of incorporating
mean-reverting dynamics while retaining analytical tractability. By “softly attractive” drift we mean the
DMPS drift with opposite sign, i.e. −β tanh(βf). This model presents similar dynamics to the O-U
framework, and allows for a stationary time-independent probability measure. The marginal difference
with the O-U advantage is that the reversion of the fundamental to the mean is softer, and the advantage
is that the full spectrum is available and the dynamics do not require an approximation. The equation
for the exchange rate after applying Itô’s lemma is now given by

∂tX(t, f) +
1

2
∂ffX(t, f)− β tanh(βf)∂fX(t, f)− αX(t, f) = −αf. (38)

Using the equivalent transformation as in the DMPS case, we plug in Eq.(38) into Eq.(21) and obtain:

∫ f
cosh(βζ)∂tY (t, ζ)+

1
2 [β sinh(βf)Y (t, f) + cosh(βf)∂fY (t, f)]−

β sinh(βf)Y (t, f)− α
∫ f

cosh(βζ)Y (t, ζ)dζ = −αf.

(39)

Now, taking once more the derivative of Eq.(39) with respect to f , one obtains:

∂tY (t, f) +
1

2
∂ffY (t, f)−

[
β2

2
+ α

]
Y (t, f) = −α f

cosh(βf)
. (40)

Observe now that Eq.(40) is once again equivalent to the standard BM motion case and we can repeat the
same procedure we . The spectrum will now include the eigenvalue zero since we deal with a stationary
case.

We now proceed as before and Eq.(40) reads:

− ∂τY (τ, f) +
1

2
∂ffY (τ, f)−

[
β2

2
+ α

]
Y (τ, f) = −α f

cosh(βf)
. (41)

Consider now the homogenous part of Eq.(41), namely:
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−∂τY (τ, f) +
1

2
∂ffY (τ, f)−

[
β2

2
+ α

]
Y (τ, f) = 0.

As done before, the method of separation of variables leads us to introduce Y (τ, f) = φ(τ)ψ(f) and the
previous equation can be rewritten as:

−∂τψ(τ)

ψ(τ)
+

1

2

∂ffψ(f)

ψ(f)
−
[
β2

2
+ α

]
= 0.

and therefore we can write:


−∂τψ(τ)
ψ(τ) = λk,

1
2
∂ffψ(f)
ψ(f) −

[
β2

2 + α
]

= λk

Defining Ω2
k =

[
β2

2 + α
]

+ λk, the relevant eigenfunctions reads:

ψ(f) = c1 sin(
√

2Ωkf) + c2 cos(
√

2Ωkf).

Going back to Eq.(21), the boundary conditions at the borders of the target zone f = −f reads:

∂f

[∫ f

cosh(βζ)ψ(ζ)dζ

]
|f=f = 0.

which implies that:

cosh(βf)ψ(f) ⇒ c1 = 0 and Ωk = (2k + 1)
π

2
√

2 f
. (42)

We note that Eq.(42) implies :

λk =
(2k + 1)2π2

8f
2 − β2

2
− α ≥ 0. (43)

Lastly, as expected, for the soft attractive case we are able to derive the exact spectrum analytically and
unlike the DMPS case, there is no spectral gap.
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