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Abstract

We consider the classic Allingham and Sandmo (1972) tax compliance problem in the context of the
Choquet-Schmeidler Expected Utility (CSEU) model, using the Non—Extremal Outcome (NEO)-
additive capacities proposed by Chateauneuf, Eichberger, and Grant (2004), in which Knightian
uncertainty (ambiguity) exists concerning the penalty rate faced in the case of an audit. Pessimistic
incarnations of the CSEUmodel can yield much lower underreporting rates than its Expected Utility
(EU) counterpart, and do so without the need for moral sentiments, social stigma or probability
perception functions. We confirm previous results, obtained in other contexts, showing that
ambiguity-aversion reinforces the incentive effects of risk-aversion. We define the concept of a Risk-
preserving increase in ambiguity (RPIA), which allows us to consider a change in the distribution of
penalty rates such that (i) a CSEU decisionmaker will perceive a change in her welfare, whereas (ii)
an EU decisionmaker will not. We also present simulation results that support the view according
to which ambiguity aversion explains the use of accounting firms in preparing tax returns. Finally,
by modeling a simple game between the taxpayer and the Internal Revenue Service (IRS), we show
that increasing ambiguity in the tax code will not be in the IRS’s interest if the associated rise
in the cost of auditing is sufficiently large. It is therefore likely that increasing complexity (and
therefore ambiguity) will reduce tax receipts, even in the presence of ambiguity-averse taxpayers.
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1 Introduction

Recent work by Bernasconi (1998), Bernasconi and Zanardi (2004) and Arcand and Rota-

Graziosi (2004) has shown that pessimism concerning audit rates, formalized using the Rank

Dependent Expected Utility (RDEU) model or Cumulative Prospect Theory (CPT), can

explain the abnormally high tax compliance rates observed in practice, abnormal, that is, in

terms of an Expected Utility (EU) interpretation (see Andreoni, Erard, and Feinstein (1998)

for a survey).1 The purpose of this paper, in contrast, is threefold.

First, we extend the standard Allingham and Sandmo (1972) model of tax compliance as

a gamble to situations of ambiguity, also known as Knightian uncertainty. This will allow

us to ascertain the degree to which ambiguity aversion reinforces risk aversion, and can

therefore contribute something to explaining the tax compliance puzzle. That ambiguity

aversion reinforces risk aversion has been shown in other contexts (see Mukerji and Tallon

(2004) for a survey).

Second, we highlight the use of professional accountants in preparing tax returns, where

their role is interpreted as being one of eliminating or at least reducing the ambiguity as-

sociated with the tax compliance gamble. By making use of an accountant, the taxpayer

essentially tilts the world towards one characterized by risk, rather than one characterized

by uncertainty. In particular, we compute the willingness to pay for eliminating ambiguity,

and distinguish between the "pure" ambiguity premium and the "aggregate" premium which

includes the effect of risk.

Third, we go beyond the basic Allingham and Sandmo (1972) framework, and consider

an extremely simple game in which the tax authorities choose an audit probability and the

taxpayer her degree of compliance (Graetz, Reinganum, and Wilde (1986)). The properties

of the equilibrium under ambiguity (EUA) of this game imply that, when the decrease in

1 In the EU model, strictly positive underreporting will obtain when the expected gain to evasion (the
probability of not being audited minus the probability of being audited times the penalty rate one incurs on
undeclared income) is positive: in most countries, this expected gain is indeed positive, but most taxpayers
engage in no underreporting at all.
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the cost of an audit caused by simplification of the tax code (and thus the elimination of

ambiguity) is sufficiently large, it will be in the interest of the tax authorities to eliminate

ambiguity in the tax code, despite its deterrence effect in terms of taxpayer compliance in

a partial equilibrium setting. All of our theoretical results are, when possible, confronted

with empirical evidence for the US.

Our focus on the ambiguity of the tax code is motivated empirically by the important

public policy implications of the issue. For example, the Cato Institute states that:

Income taxes are hard to understand and the rules now span 60,044 pages....
Americans are baffled by the complex rules on capital gains, savings plans, edu-
cation incentives, and other items.... Tax complexity is getting worse.... Citizens
are required to comply with the tax laws, but that is difficult when the rules are
constantly changing.

Few would argue with the statement that tax codes, in the US and other OECD countries,

are unduly complex, and in the US case, the issue was recently brought to the forefront of

public debate by the widely publicized report of the National Taxpayer Advocate (2004):2

Without a doubt, the largest source of compliance burdens for taxpayers
and the IRS alike is the overwhelming complexity of the tax code, and without a
doubt, the only meaningful way to reduce these compliance burdens is to simplify
the tax code enormously.

Given this state of affairs, is it reasonable to assume, first, that taxpayers know the

penalty rates that apply in different circumstances when tax is underreported and, second,

that taxpayers are able to assign probabilities to the various potential outcomes they may

be confronted with?

We pose these two questions at the outset because they are key assumptions of the stan-

dard EU approach to tax compliance. We believe that both assumptions are unreasonable,

and that the EU approach therefore ignores important aspects of taxpayer behavior. The

alternative proposed in this paper is therefore to place the ambiguity of the tax code, gener-

ated by its complexity, at the heart of the analysis, using the Choquet-Schmeidler Expected
2 The full report is available online at: http://www.irs.gov/advocate/article/0„id=133967,00.html
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Utility (CSEU) model developed by Schmeidler (1989). We also choose to focus on uncer-

tainty concerning the penalty rate, though an alternative would be to focus on uncertainty

concerning the marginal tax rate.3

The structure of the remainder of the paper is as follows. In part 2, we present the

assumptions under which we shall be working, and specify preferences in terms of the CSEU

model with NEO-additive capacities recently proposed by Chateauneuf, Eichberger, and

Grant (2004). In part 3 we specify the tax-compliance gamble in the context of CSEU

preferences with NEO-additive capacities, with an uncertain penalty rate, and characterize

optimal compliance behavior (Proposition 1). In part 4 we study the impact of changes in the

distribution of the penalty rate on compliance behavior. The changes in the distribution

of penalty rates we consider are all meant as proxies for a change in the complexity of

the tax code. In turn, we consider: (i) a mean preserving increase in the risk of the

distribution of penalty rates (Proposition 2), (ii) an α−squeeze in the distribution of penalty
rates (Proposition 4), and we introduce (iii) the concept of a "risk preserving increase in

the ambiguity" of the distribution of penalty rates (Proposition 5). In passing, we verify

that the results obtained in the CSEU context are robust (Proposition 3) to a switch to

alternative axiomatics provided by the "smooth model of ambiguity aversion" of Klibanoff,

Marinacci, and Mukerji (2004). All of these results confirm earlier findings (summarized

in Mukerji and Tallon (2004)) that ambiguity-aversion (when pessimism prevails) tends to

reinforce the effects of risk-aversion. We also provide empirical evidence which suggests

that a pessimistic CSEU model with NEO-additive capacities provides a good explanation

for observed patterns of underreporting in the US over the past half century. In part 5,

we provide a general characterization of the risk and ambiguity premia in the CSEU with

NEO-additive capacities case (Lemma 3), and apply the result to the tax-compliance context

(Proposition 5). Finally, in part 6, we specify the interaction between the taxpayer and

the IRS in a simple game-theoretic construct (in which the taxpayer chooses her level of

3 Our paper also extends the results obtained in an EU setting by Alm, Jackson, and McKee (1992b) to
a CSEU setting.
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underreporting and the IRS chooses the audit probability), and analyze the impact on the

resulting equilibrium of changes in the distribution of penalty rates. Of particular interest

in this context is how changes in the distribution of penalty rates affect the cost of an audit

for the IRS. We prove (Proposition 6) that an increase in complexity (as proxied by a mean

preserving increase in the risk of penalty rates) will increase equilibrium underreporting

when the resulting increase in the cost of an audit is sufficient to offset the deterrence effect

on taxpayers of increased complexity.

2 Capacities and Choquet-Schmeidler expected utility

In this paper, it will be convenient to focus our attention on Non-Extremal Outcome addi-

tive capacities (henceforth "NEO-additive") defined by Chateauneuf, Eichberger, and Grant

(2004). Following these authors, we shall place ourselves in a situation of uncertainty:

a state of nature will obtain, but we will be unable to say definitely which one. Let

S = {s0, s1, ..., si, ..., sn} be the finite set of states of nature. Consider the set of subsets of
S, denoted by E = 2S, which we shall refer to as the set of events. Let X : S → R with

s→ X(s). Then a capacity is defined as follows:

Definition 1 ν : A ∈ E→ ν(A) ∈ [0, 1] is a capacity if ν(∅) = 0, ν(S) = 1, and A ⊆ B ⇒
ν(A) 6 ν(B); ν is convex if ν(A ∪B) + ν(A ∩B) > ν(A) + ν(B),∀A,B ∈ E.

Definition 2 (Chateauneuf, Eichberger, and Grant (2004), Definition 3.1) For all E ∈ E,

µ0 (E) ≡
½
1 for E = S
0 otherwise

, µ1 (E) ≡
½
1 for E = ∅
0 otherwise

.

Let π be a probability distribution defined over E. If we assume that π is objectively

given, then the CSEU model with Neo-additive capacity is equivalent to the model of Cohen

(1992) under risk. We use the following definitions:

Definition 3 (Chateauneuf, Eichberger, and Grant (2004), Definition 3.2) Let γ, λ be real
numbers such that 0 6 γ 6 1, 0 6 λ 6 1 − γ. Then a NEO-additive capacity ν is defined
by ν (E |π, γ, λ) = γµ0 (E) + λµ1 (E) + (1− λ− γ)π (E), ∀E ∈ E.
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LetX ∈ V where V = {X : S → R} . The Choquet-Schmeidler Expected Utility (CSEU)
is defined as follows:

Definition 4 (Choquet (1953), Schmeidler (1986)) Let X = x0A
∗
0 + ... + xiA

∗
i + ...xnA

∗
n,

where Ai is a partition of S and A∗i is an indicator function defined by

A∗i (s) =
½
1 if s ∈ A
0 otherwise

and where we rank xn 6 ... 6 xi 6 ... 6 x1 6 x0. Then the CSEU of the gamble is
given by

R
u(X)dν = u(xn)+ (u(xn−1)− u(xn)) ν(X > xn−1)+ ...+(u(xi−1)− u(xi)) ν(X >

xi−1) + ...+ (u(x0)− u(x1)) ν(X > x0).

In the case of NEO-additive capacities, the expectation of u (.) with respect to the NEO-

additive capacity ν (.), is also given by the Choquet integral, which takes a particularly

intuitive form:

Lemma 1 (Chateauneuf, Eichberger, and Grant (2004), Lemma 3.1) The CSEU of a simple
function f : S −→ R with respect to the NEO-additive capacity ν (E |π, γ, λ) is given by:

V (f |ν (E |π, γ, λ)) = γmin
s∈S

f + λmax
s∈S

f + (1− λ− γ)Eπ [f ] , ∀E ∈ E.

The sum γ + λ represents the amount of perceived ambiguity, 1 − γ − λ is the degree

of confidence in the belief π. In what follows we use the lack of confidence in the belief

represented by π as one of the main explanatory factors for the demand for professional

accountant’s services.

3 Tax compliance under Choquet-Schmeidler expected

utility with NEO-additive capacities

Consider the standard Allingham and Sandmo (1972) tax compliance problem, where we

allow for different potential penalty rates, denoted by θi, i = 1, ..., n, with θ1 < θ2 < ... <

θi < θi+1 < ... < θn. Let y denote after-tax income, t the marginal tax rate and z the extent

of underreporting. Then the gamble faced by the taxpayer involves monetary outcomes that

can be ranked, for z > 0, as y − θntz 6 ... 6 y − θitz 6 ... 6 y − θ2tz 6 y − θ1tz 6 y + tz,
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where y− θitz represents the outcome when an audit obtains and penalty rate θi is applied,

whereas y + tz represents the outcome in the absence of an audit.4 We assume that the

probability of audit is known to the taxpayer and equal to p, while the (unknown) probability

of facing penalty rate θi in the case of an audit is equal to qi, with
Pi=n

i=1 qi = 1.

Note that the problem here is more complex than in the standard model. The taxpayer

has the choice between reporting her true income and avoiding penalties (her gain in this case

is known and certain) or underreporting her income and facing an audit which could lead to

penalties of an uncertain magnitude. The key insight from the modelling that follows is that

the taxpayer’s behavior is not only driven by risk-aversion: it is driven by ambiguity-aversion

as well, since the probabilities with which the different penalty rates obtain are unknown.

Applying CSEU with NEO—additive capacities to the tax compliance problem yields the

following objective function for the taxpayer:

CSEU (γ, λ; z) = p

 γu (y − θntz) + λu (y − θ1tz)

+ (1− γ − λ)
i=nX
i=1

qiu (y − θitz)

+ (1− p)u(y + tz). (1)

When it is convenient, we shall replace the discrete specification in terms of
Pi=n

i=1 qiu (y − θitz)

by a continuous formulation of the form
R θn
θ1

u (y − θtz) q(θ)dθ, where q(θ) denotes the prob-

ability density function (p.d.f.) according to which θ is distributed. In terms of optimal

compliance behavior, one can then readily establish the following result:

Proposition 1 Let µθ denote the mean penalty rate, σ2θ its variance, and let A (y) = −u00(y)
u0(y) .

Then a second-order approximation to optimal underreporting is given by z∗CSEU (γ, λ) =
1

tA(y)
1−p−p(θnγ+θ1λ+(1−γ−λ)µθ)

1−p+p(θ2nγ+θ21λ+(1−γ−λ)(µ2θ+σ2θ))
, when p < p

CSEU
(γ, λ) = 1

1+θnγ+θ1λ+(1−γ−λ)µθ , and z
∗
CSEU (γ, λ) =

0, otherwise.

Proof : See Appendix.

Optimal compliance behavior under CSEU with NEO—additive capacities yields several

well-known special cases (see Chateauneuf, Eichberger, and Grant (2004)) by restricting

4 This formulation of the problem, in which the total penalty is proportional to the amount evaded, is
due to a classic paper by Yitzhaki (1974).
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the values taken on by γ and λ.5 For γ = λ = 0 we obtain the EU solution z∗EU =

z∗CSEU (0, 0) =
1

tA(y)
1−p−pµθ

1−p+p(µ2θ+σ2θ)
.6 The restriction 0 < γ 6 1, λ = 0 yields the simple capacity

case, whose axiomatics have been provided by Eichberger and Kelsey (1999): z∗CSEU (γ, 0) =

1
tA(y)

1−p−pµθ−pγ(θn−µθ)
1−p+p(µ2θ+σ2θ)+pγ(θ2n−µ2θ−σ2θ)

.7 Gajdos, Tallon, and Vergnaud (2004) extend the Gilboa-

Schmeidler maxmin expected utility model, yielding a specification that is functionally equiv-

alent to this case, where the parameter γ is interpreted as being the degree of "ambiguity-

aversion" of the decisionmaker (also see Mukerji (1997)). When γ = 1, λ = 0, which cor-

responds to a situation called "pure pessimism", z∗CSEU (1, 0) =
1

tA(y)
1−p−pθn
1−p+pθ2n . Conversely,

optimism corresponds to 0 < λ 6 1, γ = 0 and z∗CSEU (0, λ) = 1
tA(y)

1−p−pµθ−pλ(θ1−µθ)
1−p+p(µ2θ+σ2θ)+pλ(θ21−µ2θ−σ2θ)

.

Finally, when γ + λ = 1, one obtains z∗CSEU (γ, 1− γ) = 1
tA(y)

1−p−p(θ1+γ(θn−θ1))
1−p+p(θ21+γ(θ2n−θ21))

.

Let p
EU
denote the threshold value of the audit probability below which positive un-

derreporting obtains in the EU case. Then Proposition 1 implies that p
CSEU

(γ, λ) < p
EU

when
γ

λ
>

µθ − θ1
θn − µθ

. (2)

Similarly, Proposition 1 implies that z∗CSEU 6 z∗EU when

γ

λ
>
(1− p) [µθ (1 + µθ + µ2θ + σ2θ) + σ2θ]− (1− p+ µ2θ + σ2θ)− (1− p− pµθ)θ

2
1

(1− p− pµθ)θ
2
n + (1− p+ µ2θ + σ2θ)− (1− p) [µθ (1 + µθ + µ2θ + σ2θ) + σ2θ]

. (3)

These inequalities are suggestive of how pessimistic CSEU preferences can provide an

5 Note that we restrict our attention to the case where the audit rate p is known by the taxpayer.
This situation is similar to the one considered in the Ellsberg (1961) paradox: the taxpayer knows p, but
does not know the penalty rate she will face, the only restriction being that qi ∈ [0, 1]. An alternative
specification would involve having the taxpayer not know p while restricting its value a priori to some
interval, such as p ∈ [0, p] . As an illustration, consider the "pessimistic" case where λ = 0 and γ = 1. Then
CSEU (1, 0) = pu(y − θntz) + (1− p)u(y + tz). An example of reasonable prior beliefs would simply be
that the probability of being audited is lower than the probability of not being audited (p 6 1− p), leading
to p = 1

2 and CSEU (1, 0) = 1
2u(y − θntz) +

1
2u(y + tz). In this case, the taxpayer not only restricts her

attention to the highest possible penalty rate: she also attributes a weight of 12 to the likelihood of being
audited and paying penalty rate θn. If p > 1

2 , it is trivial to show that the taxpayer always chooses z
∗ = 0.

6 In the standard case, σ2θ = 0 and µθ = θ.
7 Chateauneuf, Eichberger, and Grant (2004) refer to this case as being one of "pure pessimism", and do

not consider the case where γ = 1 and λ = 0. Dow and Werlang (1992) and Dow and Werlang (1994) also
explicitly consider the simple capacity case in which λ = 1− γ.
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explanation for the tax compliance puzzle: if the ratio γ/λ is sufficiently large, a CSEU

taxpayer will engage in no underreporting at all for lower audit probabilities than her EU

counterpart, and when they both engage in positive underreporting, the CSEU taxpayer

underreports less.

In order to illustrate Proposition 1 in quantitative terms that are reasonably close to

reality, consider the three-point distribution of penalty rates given by (q1, θ1; 1− q1− qn, µθ;

qn, θn).8 A plausible parameterization that corresponds roughly to US data involves θ1 = 0

with a probability of 0.5, and a mean penalty rate of around 20-25%, with the three proba-

bilities satisfying qn ¿ 1− q1− qn < q1. In Figure 1, underreporting as a fraction of income

(z
∗
CSEU

y
) is simulated for this distribution of penalty rates, for various values of λ and γ, as

a function of p. As should be clear, underreporting is much lower under CSEU preferences

as long as γ is significantly greater than 0, and z∗CSEU(0.1, 0.8) still lies below the EU case.

8 In this case, µθ =
³

q1
q1+qn

´
θ1+

³
qn

q1+qn

´
θn and σ2θ =

³
q1qn
q1+qn

´
(θn − θ1)

2. If we solve for the maximum

penalty rate and its associated probability as a function of the other parameters of the distribution, we
obtain qn =

q21(θ1−µθ)2
σ2θ−q1(µθ−θ1)2

, θn = θ1 +
σ2θ

q1(µθ−θ1) . Note that a maximum penalty rate (θn) of 2.8 greatly

exceeds the maximum civil penalty rate of 25 percent of unpaid tax (75 percent in the case of fraud) that is
currently used in the U.S. However, in certain situations the IRS may also initiate audits of returns from two
prior tax years in addition to the current year (so-called “back audits”). Moreover, if fees paid to taxpayer
representatives are included along with the potential loss of social standing, a maximum “penalty” rate of
around 300 percent of the current tax year’s unpaid tax could be possible in some (rare) cases.
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Figure 1: Optimal compliance behavior, z∗CSEU (γ,λ)

y
, for u (x) = x1−R

1−R , R = 1.8, y = 100,

t = 0.3, θ1 = 0, q1 = 0.5, θn = 2.8, qn ' 0.05 , µθ = 0.25, σ2θ = 0.35.

4 Compliance behavior and changes in the distribution

of penalty rates

One of the main purposes of this paper is to ascertain how changes in the ambiguity of the

tax code could affect taxpayer welfare and compliance behavior. It is therefore particularly

important to study the impact of changes in the distribution of penalty rates that can

be interpreted as representing changes in ambiguity, as opposed to changes in γ and λ,

which correspond to the perception of ambiguity by the decisionmaker. In what follows,

we study the effects of three different changes in the distribution of penalty rates: (i) a
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mean-preserving increasing in its risk, (ii) a squeeze in the distribution of penalty rates and,

(iii) a change in penalty rates that affects the extremal outcomes while leaving the moments

of the distribution unchanged. Each change in the distribution of penalty rates that we

consider corresponds to a different interpretation of what is meant by ambiguity per se, and

how one chooses, or not, to distinguish it from risk.

4.1 A mean-preserving increase in risk in the distribution of θ

Gajdos, Tallon, and Vergnaud (2004) model the "degree of imprecision" in the distribution

of a random variable (interpreted by them as a prior) by its risk as defined by Rothschild and

Stiglitz (1970), in the context of their extension of the Gilboa-Schmeidler maxmin preference

functional where 0 < γ 6 1, λ = 0.9 The maximum degree of imprecision in their model

is given by the completely uninformative (uniform) prior q(θi) = 1
n
,∀i. It therefore seems

natural to model an increase in ambiguity by an increase in risk in the present context as

well.

4.1.1 Preliminaries

Consider a Mean-Preserving Increase in the Risk (MPIR) of the distribution of penalty

rates, defined by the usual integral conditions: (i)
R θn
θ1

Qρ(θ, ρ)dθ = 0, (ii)
R θ0
θ1
Qρ(θ, ρ)dθ >

0,∀θ0 ∈ [θ1, θn], where Q(θ, ρ) is the cumulative density function (c.d.f.) associated with
q(θ, ρ), Qρ(θ, ρ) is the derivative of the c.d.f. with respect to ρ, and ρ is the parameter of

increasing risk of Rothschild and Stiglitz (1970). Other concepts of MPIRs of a distribution

are considered in Chateauneuf, Cohen, and Meilijson (2004).10

9 More explicitly, the Gajdos, Tallon, and Vergnaud (2004) evaluation of the tax compliance gamble

would be given by GTV EU = p
h
γu(y − θntz) + (1− γ)

R θn
θ1

u(y − θtz)q(θ, ρ)dθ
i
+ (1− p)u(y + tz) where

they would refer to γ as the taxpayer’s degree of imprecision-aversion, and ρ is the Rothschild-Stiglitz
parameter of increasing risk.
10 Note, by construction, that µθ is independent of ρ, whereas two integrations by parts of the de-

finition of σ2θ, differentiation with respect to ρ, and application of the two integral conditions yield
dσ2θ(ρ)
dρ = 2

R θn
θ1

³R θ
θ1
Qρ(x, ρ)dx

´
dθ > 0. An increase in risk therefore increases variance, which will be

useful in the context of the second-order approximations used in this paper, and in many of the simulations
that we present. The converse is of course not necessarily true (i.e. an increase in σ2θ does not necessarily

10



We will use two standard results associated with MPIRs, which we summarize in the

following Lemma:

Lemma 2 (Rothschild and Stiglitz (1970), Laffont (1990), Theorem 2, p. 28) Consider an
expression of the form W (z, ρ) =

R θn
θ1

g(θ, z)q(θ, ρ)dθ. Then:

(i) sign
h
d
dρ
W (z, ρ)

i
= sign

h
∂2g(θ,z)

∂θ2

i
; (ii) sign

"
d
dρ
argmax

{z}
W (z, ρ)

#
= sign

h
∂3g(θ,z)

∂z∂θ2

i
.

Part (i) of the Lemma is sometimes referred to as the Fundamental Theorem of Risk,

whereas part (ii) often allows one to sign comparative statics unambiguously.

4.1.2 The impact of an MPIR under CSEU with NEO-additive capacities

Applying Lemma 2 to the CSEU objective function given in (1) immediately yields the

following result:

Proposition 2 Let the distribution of penalty rates be parameterized by its risk ρ, in the
sense of Rothschild and Stiglitz (1970). Then: (i) the taxpayer’s welfare, evaluated at
the optimum, is decreasing in ρ: d

dρ
CSEU (γ, λ; z) 6 0; (ii) optimal underreporting is also

decreasing in ρ: d
dρ
z∗CSEU(γ, λ) 6 0.

Proof : See Appendix.

Proposition 2(ii) is a general result that does not hinge upon the second-order ap-

proximation to z∗CSEU(γ, λ) given in Proposition 1. Note however that optimal under-

reporting, as approximated in Proposition 1, is of course also decreasing in ρ, because

dz∗CSEU
dρ

=
dz∗CSEU
dσ2θ

dσ2θ(ρ)

dρ
< 0. This result establishes that, when an increase in ambiguity

is modelled as an MPIR in the distribution of penalty rates, ambiguity-aversion reinforces

risk-aversion by deterring underreporting.

lead to an increase in ρ); see the counterexample in Laffont (1990), p. 26.
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sq
2

CSEUH.L
CSEUH0,0L CSEUH0,1L

CSEUH1,0L
CSEUH0.6,0.1L

Figure 2: Welfare at the optimum under CSEU as a function of σ2θ, for:

u (x) = −e−νx
ν

, ν = 0.05, y = 100, t = 0.3, p = 0.03, θ1 = 0, q1 = 0.5, µθ = 0.25, σ
2
θ ∈ [0, 3] .

Proposition 2 is illustrated in Figures 2 and 3, where we simulate taxpayer welfare,

evaluated at the optimum, as well as optimal underreporting as a fraction of income, as

functions of σ2θ, where θ is assumed to follow the same three point distribution that was used

previously. The most striking aspect of Figure 2 is how welfare falls much faster for CSEU

taxpayers as compared with the EU case, as σ2θ increases. The same pattern emerges for

optimal underreporting in Figure 3.
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Figure 3: Optimal compliance behaviour under CSEU, as a function of σ2θ, for the same

parameterization as in Figure 2.

4.1.3 Alternative axiomatics: smooth ambiguity aversion

How robust is the result presented in Proposition 2, in terms of the deterrent effect of

ambiguity when the latter takes the form of an MPIR? In order to provide a partial answer to

this question, we consider an alternative model that is not based on NEO-additive capacities,

but which nevertheless formulates an increase in ambiguity in terms of an MPIR. The model

in question is that of "smooth ambiguity aversion" recently proposed by Klibanoff, Marinacci,

and Mukerji (2004).

In the interest of tractability, we restrict our attention to a situation in which the penalty

rate can take on two values, θ1 and θn, with associated probabilities 1−q and q. The smooth
ambiguity aversion (SAA) evaluation of the tax compliance gamble under consideration is

13



then given by:

SAA =

Z 1

0

φ

 p [qu(y − θntz) + (1− q)u(y − θ1tz)]

+ (1− p)u(y + tz)

 f
¡
q, ρq

¢
dq, (4)

where the probability q is itself a random variable distributed according to the p.d.f. f
¡
q, ρq

¢
over the interval [0, 1], ρq is the parameter of increasing risk of Rothschild and Stiglitz

associated with f
¡
q, ρq

¢
, and φ(.) is a twice-differentiable function. Ambiguity-aversion

corresponds to φ00(.) < 0. A straightforward application of Lemma 2 allows one to establish

the following result:

Proposition 3 Assume that the taxpayer’s preferences can be described by the smooth ambi-
guity aversion model of Klibanoff, Marinacci, and Mukerji (2004). Then, for an ambiguity-
averse taxpayer: (i) dSAA

dρq
6 0; (ii) dz∗SAA

dρq
6 0.

Proof : See Appendix.

Proposition 3 shows that the results obtained in Proposition 2 concerning the impact of

an increase in ambiguity on taxpayer welfare and underreporting are robust to a change in

axiomatics, as long as an increase in ambiguity is understood in terms of an MPIR.
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Figure 4: Optimal compliance behaviour as a function of ambiguity, when the probability

q of facing penalty rate θn is given by the Beta distribution, and: u (x) = −e−νx
ν
, ν = 0.05,

φ(x) = −e−αx
α
, α = 0.4, y = 8, t = 0.3, p = 0.03, θ1 = 0, θn = 3, µq = 0.25.

In Figure 4, we illustrate Proposition 3 under the assumption that f(q; .) is given by

a Beta distribution Γ(D+B)
Γ(D)Γ(B)

qD−1(1 − q)B−1, 0 < q < 1, D,B > 0, with u (x) = −e−νx
ν
and

φ(x) = −e−αx
α
. Explicit computation of the objective function given in (4), optimization

with respect to z, and the application of a first-order Taylor expansion to the FOC allows one

to solve for optimal underreporting in closed form, which we simulate in Figure 4 for different

values of the variance of q (σ2q =
DB

(D+B)2(D+B+1)
) while maintaining µq =

D
D+B

constant.11

Each curve corresponds to a different value of the coefficient of absolute ambiguity aversion:

the greater the degree of absolute ambiguity aversion, the lower the level of underreporting.

Though the interpretation of an MPIR in the distribution of penalty rates as also corre-
11 See the Appendix for details of these computations.
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sponding to an increase in ambiguity is compelling, it fails to hone in on the most striking

aspect of the CSEU with NEO-additive capacities preference functional: the importance of

the extrema. We therefore turn to a particular form of MPIR, referred to as a squeeze,

which will explicitly affect θ1 and θn.

4.2 A squeeze in the distribution of θ

Consider an α−squeeze (Duclos, Esteban, and Ray (2004)) in the distribution of penalty
rates. This is a special case of an MPIR, but which changes the support of the distribution.

Definition 5 For α ∈ (0, 1], an α−squeeze of q(θ) is defined by qα(θ) = 1
α
q
³
θ−[1−α]µθ

α

´
.

The resulting distribution qα(θ) will be more concentrated around the mean µθ (which

will remain unchanged), its variance will be equal to α2σ2θ, while the support of the squeezed

distribution will be given by [αθ1 + [1− α]µθ, αθn + [1− α]µθ] ⊆ [θ1, θn].
A squeeze introduces greater heterogeneity in taxpayer response because there can be

interesting interactions between the impact of the squeeze on the variance of penalty rates,

versus its impact on the extrema. For an optimistic taxpayer, for example, an increase in α

increases variance, thereby reducing underreporting, while the increase in α also reduces the

minimal value of the penalty rate, thereby resulting in greater underreporting In the limit

case of a perfectly optimistic taxpayer (γ = 0, λ = 1), the first effect vanishes altogether,

and the impact of an increase in α will be unambiguously to increase underreporting. The

converse is true for a perfectly pessimistic taxpayer (γ = 1, λ = 0).

The preceding argument implies that the impact of a change in α is, in the general case,

ambiguous, and depends upon the values taken on by γ and λ. One may then state the

following:

Proposition 4 Consider an α−squeeze in the distribution of penalty rates. Then: (i)
d
dα
z∗CSEU(0, 0) 6 0; (ii) d

dα
z∗CSEU(1, 0) 6 0; (iii) d

dα
z∗CSEU(0, 1) > 0. Moreover, ∃ γc (λ, α)

such that d
dα
z∗CSEU(γ, λ) 6 0, for γ > γc (λ, α).

Proof : See Appendix.
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An illustration of Proposition 4 is given in the right-hand panel of Figure 5 where we

assume that q(θ) is given by the arcsin density (q(θ) = 1

π
√

θ(1−θ) , 0 < θ < 1), which is

represented for different values of α in the left-hand panel. In this case, one can solve

explicitly for the threshold value of γ as:

γc (λ, α) =
1

2α2p

³
M −

p
M2 + 4α2p (2 (9p− 8)λ+ α (1 + λ) [(3p− 2) + αpλ])

´
,

where M = 4 (4 + α)− p (18 + 6α+ α2). As one would expect from Proposition 4, optimal

underreporting is increasing in α for a perfectly optimistic CSEU taxpayer, while an EU

taxpayer and CSEU taxpayers that display a sufficient degree of pessimism will see their

underreporting decrease as α rises.

H1-aL*1ÅÅÅÅÅ2 a+H1-aL*1ÅÅÅÅÅ2H1-a'L*1ÅÅÅÅÅ2 a'+H1-a'L*1ÅÅÅÅÅ2 1
a

qHqL
qaHqLq0.5HqLqa'HqL

q0.1HqL

0.2 0.4 0.6 0.8 1
a

65%

63%
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z* H.;aL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅy

z*H0,0L
z*H0.6,0.1L

z*H0,1L

z*H1,0L

Figure 5: Optimal compliance behaviour for penalty rates distributed according to the

arcsin density (q(θ) = 1

π
√

θ(1−θ) , 0 < θ < 1), with the following parameterization:

u (x) = −e−νx
ν
, ν = 0.5, y = 10, t = 0.3, p = 0.03, θ1 = 0, θn = 3.

4.3 Risk-preserving increases in ambiguity

The characterizations of increases in ambiguity used so far have involved two concepts of

MPIRs. We now consider whether it is possible to construct a change in the distribution
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of penalty rates such that (i) a CSEU decisionmaker will perceive a change in her welfare,

whereas (ii) an EU decisionmaker will not. Given that the EU preference functional is

affected by changes in the risk of the distribution of penalty rates, we wish to consider changes

in the distribution that affect its extrema (θ1 and θn), while leaving the
Pi=n

i=1 qiu (y − θitz)

term unchanged. We shall refer to such a change as a "risk-preserving increase in ambiguity"

(RPIA), which we define as follows:

Definition 6 Consider a random variable distributed according to the p.d.f. q(θ,∆) over
the interval [θ1−∆, θn+∆]. Then the distribution q(θ,∆0) will be said to be more ambiguous
than q(θ,∆), for constant risk up to the nth moment about the mean (RPIA(n)), when: (i)
∆0 > ∆, (ii)

R θn+∆
θ1−∆ (θ − µθ)

r q(θ,∆)dθ =
R θn+∆0

θ1−∆0 (θ − µθ)
r q(θ,∆0)dθ, ∀r = 1, ..., n.

Ensuring that the nth moment about the mean remains constant under an RPIA involves

solving an nth degree polynomial equation. For most applications, in which second- or third-

order approximations suffice, this procedure is simple to implement. As an illustration,

consider once again the three point distribution of penalty rates (q1, θ1; 1 − q1 − qn, µθ;

qn, θn). Then the distribution given by
q1qn(θn−θ1)2

(θn−θ1+2∆)[qn(θn−θ1)+(q1+qn)∆] , θ1 −∆;

1− q1qn(θn−θ1)2
(θn−θ1+2∆)[qn(θn−θ1)+(q1+qn)∆] −

q1qn(θn−θ1)2
(θn−θ1+2∆)[q1(θn−θ1)+(q1+qn)∆] , µθ;

q1qn(θn−θ1)2
(θn−θ1+2∆)[q1(θn−θ1)+(q1+qn)∆] , θn +∆

 (5)

displays the first two moments which are identical to the initial distribution, but is defined

over a wider interval: the minimum value of the penalty rate has fallen by ∆, while the

maximum value has increased by ∆. The distribution given in (5) is therefore an RPIA(2)

with respect to the initial distribution.
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Figure 6: Optimal compliance behaviour, when ∆ varies between 0 and 0.2, with the

following parameterization: u (x) = −e−νx
ν

, ν = 0.05, y = 10, t = 0.3, p = 0.03, θ1 = 0.2,

q1 = 0.5, µθ = 0.25, σ
2
θ = 0.08.

The effect of an RPIA(2) in the distribution of penalty rates, when the distribution is

given by (5), is simulated in Figure 6, as we vary ∆ between 0 and 0.2 (the initial value

of θ1 is now equal to 0.2, and we modify the other parameters of the distribution so as to

maintain a mean penalty rate of around 25%). As was the case for the α−squeeze, there
is a threshold configuration of the parameters γ and λ for which the RPIA has no impact

on compliance behavior: the increase in underreporting caused by the fall in the minimal

penalty rate (θ1 −∆) as ∆ increases, is just offset by the fall in underreporting caused by

the increase in the maximal penalty rate θn +∆. In contrast to the α−squeeze, however,
there is no impact on the variance of the distribution of penalty rates.

In Figure 6, z∗CSEU(0, 1) and z∗CSEU(0.1, 0.8) display sufficient optimism for underre-

porting to be increasing in ∆ (that z∗CSEU(0.1, 0.8) is increasing in ∆ is not particularly

apparent in visual terms in the Figure). In contrast, z∗CSEU(0.6, 0.1) and z∗CSEU(1, 0) cor-
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respond to taxpayers who are sufficiently pessimistic for underreporting to be decreasing

in ∆; z∗CSEU(0, 0) = z∗EU is, by the very definition of an RPIA2 in the present context of

second-order approximations, invariant to changes in ∆.

The upshot of our consideration of the effect of various measures of ambiguity on compli-

ance behavior is that increasing ambiguity deters underreporting when taxpayers are suffi-

ciently pessimistic, though care must be taken in separating the effect of changes in the risk

of the distribution from changes in the extrema. An MPIR, defined in the usual manner,

only affects the former, an RPIA only affects the latter, while an α−squeeze affects both.

4.4 Gustave Choquet comes to America

How does the CSEU model fare, in terms of its ability to predict true compliance rates over

the long term, when compared to the EU benchmark? In Figure 7, we present simulation

results for the underreporting rate (z/y) for the US over the past half-century (1947-2002),

which we compare to the "true" underreporting rate. The empirical counterpart to z is

given here by the US Bureau of Economic Analysis (BEA) "AGI [Adjusted Gross Income]

wage gap for wage and salary income", which represents the difference between the BEA’s

estimate of wages and salaries and taxpayer-reported wages and salaries. This measure is

then adjusted to account for "legitimate non-filers" (mainly low-income individuals who are

not required to file a tax return) using evidence from the 1988 TCMP study.

The BEA annually estimates a total AGI gap as well as component “gap” measures

including employee wages and salaries as well as farm and non-farm proprietor income. Al-

though previous studies have used the total AGI gap as a measure of noncompliance (Crane

and Nourzad (1986), Engel and Hines (1999)), the farm and non-farm proprietor gap esti-

mates rely exclusively on tax return data making the total AGI gap a less reliable evasion

measure. However, the wage AGI gap is based on independent estimates of wage income

reported by employees to the IRS and by employers to state employment agencies. There-

fore, due to its high relative degree of accuracy, the wage AGI gap is a preferred measure
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of income underreporting. Bloomquist (2003) describes the methodology used to derive the

modified wage gap.

1950 1960 1970 1980 1990 2000
Years
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z*H.Lêy

z*H0,0L
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Real Data

Figure 7: Simulation results on US data, 1947-2000.

The tax rate (t) is a weighted average marginal tax rate on ordinary income (excluding

social security and medicare). Income (y) is given by the Census Bureau’s Current Popula-

tion Survey estimate of median wage and salary income. The audit probability p is given by

the "face to face" audit rate, as published by the IRS.12 We shall assume that the penalty

rate is distributed according to the three point distribution used earlier. The utility function

used in the simulation is of the CARA class.
12 Sources and adjustments to the tax rate, income and audit variables are provided in Bloomquist (2003).
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Correlogram z z∗CSEU z∗CSEU z∗CSEU z∗CSEU
real data (0, 1) (0, 0) (0.8, 0.2) (1, 0)

z∗CSEU(0, 1) 0.227
z∗CSEU(0, 0) 0.241 0.999
z∗CSEU(0.8, 0.2) 0.411 0.894 0.908
z∗CSEU(1, 0) 0.449 0.838 0.856 0.993
mean 0.023 0.038 0.038 0.031 0.030
std. deviation 0.009 0.010 0.010 0.007 0.007
Correspondence between actual underreporting simulated series
z = 0.015

(3.20)
+ 0.205

(1.70)
× z∗CSEU(0, 1) R2 = 0.051, σ = 0.009

z = 0.014
(3.02)

+ 0.226
(1.81)

× z∗CSEU(0, 0) R2 = 0.058, σ = 0.009

z = 0.006
(1.24)

+ 0.531
(3.29)

× z∗CSEU(0.8, 0.2) R2 = 0.169, σ = 0.009

z = 0.004
(0.94)

+ 0.608
(3.66)

× z∗CSEU(1, 0) R2 = 0.202, σ = 0.008

Table 1: Actual and simulated underreporting rates for the United States, 1947-2001 (for
regression results, t-statistics in parentheses under coefficients)

As should be clear from Figure 7, z∗CSEU(1, 0), the most pessimistic specification, performs

best in terms of visually tracking the "true" rate of underreporting. This is confirmed

formally in Table 1, where we present a simple statistical assessment of the capacity of

different parameterizations of the CSEU model to explain the US data. The correlation

between z∗CSEU(1, 0) and actual data (0.449) is the highest amongst all of the alternatives

considered (the corresponding correlation for EU is 0.241) and a regression of the actual value

of underreporting on a constant and the simulated series yields anR2 for z∗CSEU(1, 0) of 0.202.

The mean simulated rate of underreporting is closest to the real value for z∗CSEU(1, 0)(the

constant in the regression is statistically indistinguishable from zero), though it does tend to

underestimate the variance. Broadly speaking, these results show that a pessimistic CSEU

model is capable of providing part of the explanation for the tax compliance puzzle in the

US case, without the need for the probability distortion functions of the RDEU model that

were used in Arcand and Rota-Graziosi (2004).
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5 The cost to taxpayers of ambiguity in the tax code

What is the magnitude of the loss incurred by a taxpayer as a result of the ambiguity

concerning the penalty rate? In this section, we establish results concerning the premia

that taxpayers would be willing to pay for the elimination of risk, ambiguity, or both, in the

tax code. Our purpose in doing so is to establish orders of magnitude that will allow us

to confront our theoretical predictions with the actual cost of preparing tax returns. Our

interpretation of the use of paid preparers in thus motivated by a desire by taxpayers to

move from a situation of Knightian uncertainty to one of conventional risk.

An approach which is close in spirit to the one developed here is provided by Fox and

Tversky (1995), who explore the "comparative ignorance hypothesis", according to which

ambiguity aversion depends upon comparisons with more familiar events or with the opinions

of more knowledgeable individuals. We view professional accountants as an extreme example

of this hypothesis: such agents do not face uncertainty when they fill in the tax forms of

their clients. Moreover, in some countries (such as France), these professionals are able to

take out insurances against the risk of errors or lawsuits, thereby protecting their clients.

In the US, a good indicator of the complexity of the tax code is the time required

to prepare and file a tax return. Based on IRS estimates, between 1997 and 2003 the time

required to complete and file a tax return (both short and long forms) grew approximately 46

percent, from 6.3 hours to 9.1 hours. This increase in time burden results from a combination

of new tax law provisions and more taxpayers using Form 1040 (the long form) and fewer

taxpayers using the two short forms (Form 1040A and Form 1040EZ). The growth in time

burden could explain, in part, the simultaneous increase in the number of taxpayers using

paid preparers: in 1997, 51.9 percent of taxpayers used a paid preparer versus 55.6 percent

in 2002.
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5.1 The risk and ambiguity premia under CSEUwith NEO-additive

capacities

Before considering the specific case of the tax compliance gamble, it is worthwhile estab-

lishing a general result concerning the premia that decisionmakers will be willing to pay in

order to eliminate risk and ambiguity, on the one hand, and ambiguity alone, on the other.

Lemma 3 (Risk and ambiguity premia "in the small" under CSEU with NEO-additive ca-
pacities) Consider a gamble (qn, kεn; qn−1, kεn−1; ...; qi, kεi; ...; q2, kε2; q1, kε1) with zero ex-
pected value (

Pi=n
i=1 qiεi = 0), variance σ

2
ε =

Pi=n
i=1 qiε

2
i , where εn < εn−1 < ... < 0 < ... <

ε2 < ε1, and k is a scalar. Then a second order approximation to the risk premium associated
with this gamble under CSEU with NEO-additive capacities is given by:

πRACSEU(t; .) = −k (γεn + λε1) +
k2

2

·
γε2n + λε21 − (γεn + λε1)

2

+(1− γ − λ)σ2ε

¸
A(y).

Proof : See Appendix.

This Lemma is important in that it shows that it is possible to separate the willingness to

pay for the elimination of risk and ambiguity into two components. To see why, note that the

standard expression for the risk premium under EU is given by πEU(t; .) =
t2

2
σ2εA(y). The

difference between the two, πACSEU(t; .) ≡ πRACSEU(t; .) − πEU(t; .), represents the willingness

to pay for the elimination of ambiguity alone:

πACSEU(t; .) = −k (γεn + λε1) +
k2

2

£
γε2n + λε21 − (γεn + λε1)

2 − (γ + λ)σ2ε
¤
A(y). (6)

As is true for other non-EU models of decisionmaking, the premia given in Lemma 3 and

in equation (6) remain non-zero even in the presence of a linear utility function (u00 = 0).13

5.2 Premia in the tax compliance gamble

How much would the taxpayer be willing to pay in order to eliminate ambiguity concerning

the penalty rates that she faces? Our result in the context of the tax compliance gamble is

the following:
13 For example, see Courtault and Gayant (1998) for the RDEU case.
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Proposition 5 Let Ψ = (1−p−pµθ−p[γ(θn−µθ)+λ(θ1−µθ)])2
1−p+p(µ2θ+σ2θ)+p[γ(θ2n−µ2θ−σ2θ)+λ(θ21−µ2θ−σ2θ)]

, ΦRA = (1−p−pµθ)2
1−p+pµ2θ

and ΦA =

(1−p−pµθ)2
1−p+p(µ2θ+σ2θ)

. Then a second-order approximation to the premium ϕRA for eliminating

risk and ambiguity in the tax compliance gamble is given by: ϕRA = 1
A(y)

³q
1−Ψ
1−ΦRA − 1

´
.

The corresponding premium ϕA for the elimination of ambiguity alone is given by: ϕA =
1

A(y)

³q
1−Ψ
1−ΦA − 1

´
.

Proof : See Appendix.
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Figure 8: The two risk premia, using the usual three point distribution of penalty rates

and the following parameterization: u (x) = −e−νx
ν
, ν = 0.05, y = 1000, t = 0.3, p = 0.03,

θ1 = 0, q1 = 0.5, µθ = 0.25, σ
2
θ ∈ [0, 3] .

Figure 8 illustrates Proposition 5 by computing the risk and "pure" ambiguity premia

for different values of γ and λ, as a function of the variance σ2θ of our usual three-point

distribution. The most striking (though unsurprizing, in light of Proposition 5) aspects
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of the simulation are, first, that the premia are significantly higher for pessimistic CSEU

decisionmakers than for the EU case and, second, that the ambiguity portion of the premium

appears to account for a major portion of the total. This highlights our interest in the use

of professional accountants in preparing tax returns. While one interpretation would view

their use as being motivated by a desire to reduce the risk associated with the tax compliance

gamble, Figure 8 suggests that, once CSEU preferences are allowed for, risk constitutes a

relatively minor concern, compared with ambiguity per se.

6 Should tax authorities reduce ambiguity?

Previous theoretical studies, in addition to the present one, have suggested that some tax

code complexity might exist by design in order to achieve increased revenues (Scotchmer and

Slemrod (1989), Slemrod (1989)). In a controlled experimental study Alm, Jackson, and

McKee (1992a) also find that greater uncertainty in either tax due, fine amount or detection

probability results in increased compliance. However, when a public good is introduced,

reporting compliance actually declined among subject participants. The authors explain

that the introduction of a public good causes taxpayer decisions to become interdependent

whereas in the absence of a public good compliance decisions are made independently. The

authors conclude that by introducing more uncertainty into the tax code “not only are

individuals made worse off. . . but the government may also lose tax revenues.”

Much of the theoretical literature emphasizes how complexity elevates the level of uncer-

tainty for the taxpayer but ignores the more practical issue that often increased complexity

is accompanied by greater opportunities to evade. For example, Graetz (1999) argues that

growing tax law complexity has led to more evasion in the U.S., although he fails to present

any evidence of this trend. Highly complicated instructions on tax forms can cause many

well-intentioned taxpayers to make mistakes causing the tax authority to expend more money

and effort to fix. Greater complexity also gives rise to “gray” areas which might be exploited

by some taxpayers and paid preparers. Furthermore, significant and frequent changes to the
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tax law may lead increasing numbers of taxpayers to rely on paid preparers out of fear they

might be paying too much in tax. Therefore, the combination of more evasion opportunities

and higher audit costs in addition to the greater burden on taxpayers, both in terms of time

and money, tilts the argument against the use of ambiguity for the sole purpose of promoting

tax compliance. We formalize this fundamental tradeoff, or at least the deterrence versus

increased audit costs portion of it, in the game-theretic context that follows.

6.1 A simple tax compliance game

In this section, we consider a simultaneous move game between the IRS and the taxpayer,

which can be thought of empirically as corresponding to a "face-to-face" audit. The IRS

chooses the audit rate (p), while the taxpayer chooses her level of underreporting (z). Each

player’s strategy set is a closed and bounded real-valued interval: [0, 1] for the IRS and [0, y]

for the taxpayer. Moreover, the IRS is assumed to be risk- and ambiguity-neutral, which

corresponds to setting γ = λ = 0 in its CSEU preference functional. In the spirit of Graetz,

Reinganum, and Wilde (1986), the IRS’s objective function is given by

Π (.; p) = t (y − z) + p (1 + µθ) tz − c (ξ, p) , (7)

where t (y − z) represents tax receipts on declared income, p (1 + µθ) tz corresponds to the

expected value of penalties collected on non-compliant taxpayers who are audited, while

c (ξ, p) is the cost of implementing an audit rate p, given a level of complexity ξ of the

auditing procedure. We assume that ∂c(ξ,p)
∂ξ

> 0, ∂c(ξ,p)
∂p

> 0, ∂2c(ξ,p)
∂p2

> 0 and ∂2c(ξ,p)
∂p∂ξ

> 0:

the cost of implementing a given audit rate is increasing in the complexity of the auditing

procedure and the cost of implementing an audit is increasing and convex in the audit rate

one wishes to implement; moreover the marginal impact of complexity on the cost of an

audit is increasing in the audit rate one wishes to implement. The convexity assumption

ensures that the IRS’s objective function is concave in p, while the assumption on the second
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order cross-partial derivative ensures that the optimal audit rate is a decreasing function of

the complexity of the audit, ceteris paribus.

We assume that the complexity of auditing is a function of the degree of ambiguity

associated with the tax code. Our working hypothesis is that greater ambiguity in the tax

code is associated with greater complexity in auditing returns, which we formalize by posing

ξ = ξ(θ1, θn, ρ) =

Z θn

θ1

ζ(θ)q(θ, ρ)dθ,

where d2ζ(θ)

dθ2
> 0 and ρ is the parameter of increasing risk of Rothschild and Stiglitz. By a

trivial application of Lemma 2, this specification implies that an increase in the ambiguity of

the tax code modelled as an MPIR of q(θ, ρ) will increase the complexity of an audit, while

an α−squeeze of q(θ) as given in Definition 5 will decrease it. The key issue in determining
the impact on the equilibrium level of underreporting in the game that follows will then be

the magnitude of dξ(θ1,θn,ρ)
dρ

=
R θn
θ1

d2ζ(θ)

dθ2

³R θ
θ1
Qρ(x, ρ)dx

´
dθ > 0. Let

p∗ (.; z) = argmax
p∈[0,1]

Π (.; p) (8)

denote the solution to the IRS’s maximization program. By implicit differentiation of the

FOC that corresponds to (8), it is then immediate that ∂p∗(.;z)
∂z

> 0. The taxpayer’s optimal

compliance behavior is characterized in Proposition 1, from which it is straightforward to

show that ∂z∗CSEU (.)
∂p

< 0. The action space of each player is continuous, and the payoff

functions Π (.; p) and CSEU (γ, λ; z) are continuous.

The concept of a Nash equilibrium has been extended to CSEU axiomatics by Dow and

Werlang (1994), Lo (1996), Marinacci (2000), and Eichberger and Kelsey (2000). We use

the concept of Equilibrium Under Ambiguity (EUA) developed by Eichberger, Kelsey, and

Schipper (2004) to establish the existence of an EUA.14 The EUA values of underreporting

and the penalty rate, denoted by (pEUA, zEUA), are then given by the solution in (p, z) of the

14 See their Proposition 3.2, p. 11.
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pair of equations given by (8) and optimal compliance behavior as characterized in Proposi-

tion 1. Figure 9 illustrates the IRS’s reaction function, as well as that of the taxpayer, for

different values of γ and λ, for a parameterization that is slightly different from that used

previously.15 As would be expected, greater pessimism on the part of taxpayers leads to

lower levels of zEUA, as well as to lower levels of pEUA.

0.3 0.6 0.9
p*H.L

30%

60%

z*H.L

z*H1,0L

z*H0,0L

z*H0.6,0.1L

z*H0,0.99L
z*H0,0.6L

p*Hz;1.4L

Figure 9: Reaction functions under the parameterization: u (x) = −e−Rx
R
, R = 0.05,

µθ = 1.2, θn = 2, and σθ = 0.025.

6.2 Changes in the distribution of penalty rates and equilibrium

underreporting

In this section, we consider the impact of changes in the distribution of penalty rates on the

equilibrium level of underreporting. As in section 4, we consider three different changes

in the distribution of θ: an MPIR, an α−squeeze, and an RPIA. We conclude by provid-
15 This change in parametrization is made purely for esthetic reasons.
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ing an initial assessment of the ability of our theoretical construct to mimic the empirical

relationship linking tax code complexity to underreporting and the willingness to pay for

accountants’ services.

6.2.1 An MPIR, an α−squeeze and an RPIA

Let eω(θ, ρ) be the value of ω(θ) ≡ d2ζ(θ)

dθ2
such that

dξ(θ1, θn, ρ)

dρ
=

Z θn

θ1

eω(θ, ρ)µZ θ

θ1

Qρ(x, ρ)dx

¶
dθ =

∂z∗CSEU (p
EUA,ρ)

∂ρ

∂2c(ξ,pEUA)
∂p2

∂z∗CSEU (pEUA,ρ)
∂p

∂2c(ξ,pEUA)
∂p∂ξ

. (9)

While apparently complex, the interpretation of equation (9) is extremely straightforward:

the function ω(θ) characterizes the degree of convexity in θ of ζ(θ) and therefore the sensi-

tivity of the complexity ξ of an audit with respect to an MPIR. The net impact on zEUA of

an MPIR is the result of two effects of opposite sign. On the one hand, an MPIR reduces

underreporting, by Proposition 2(ii). On the other, an MPIR decreases the IRS’s optimal

audit rate (because ξ increases), thereby leading to higher underreporting. The outcome

in terms of dzEUA

dρ
then depends upon the relative magnitudes of these two effects. The

value of ω(θ) implicitly defined in (9) corresponds to a situation in which the two effects

exactly cancel out and in which an MPIR has no effect on zEUA. The following Proposition

formalizes this intuition by characterizing the impact of an increase in ambiguity on zEUA,

as modelled by an MPIR in the distribution of penalty rates:

Proposition 6 Consider the EUA (pEUA, zEUA) of the preceding simultaneous move game.
Then sign

h
dzEUA

dρ

i
= sign [ω(θ)− eω(θ, ρ)].

Proof : See Appendix.

Proposition 6 is illustrated in Figure 10 (in the Appendix), where we use our usual three

point distribution and specify ζ(θ) = θη, η > 1 and c (ξ, p) = c
2
ξ2p2. We plot zEUA

y
as a

function of σ2θ, for η ranging from 1 to 1.3. In the case of η = 1, the MPIR has no effect

on the cost of the audit (because d2ζ(θ)

dθ2
= 0, by Lemma 2(i)) and the equilibrium outcome
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stems from the "pure" effect of the change in σ2θ on underreporting: the curves in the four

panels of Figure 10 are therefore all downward-sloping for η = 1 (as was the case in Figure

3). As the degree of convexity of ζ(θ) increases, the shape of the curve changes. For the

EU case or a relatively optimistic taxpayer ((γ, λ) = (0, 0.9)), zEUA

y
is increasing in σ2θ (see

the two left-hand panels in Figure 10). In contrast, the two right-hand panels of Figure 10

assume that the taxpayer is relatively pessimistic. For (γ, λ) = (0.6, 0.1), for example, a

value of η = 1.3 leads to zEUA

y
being initially increasing in σ2θ (for very low levels of σ

2
θ), with

the threshold level being rapidly attained: the curves become downward-sloping thereafter.

In Figure 11 (in the Appendix) we carry out the same exercise, but for an α−squeeze
with the distribution of penalty rates given by the arcsin density. We consider values of

η that range from 1 to 5. Because of the effect of the α−squeeze on the extrema of the
distribution of penalty rates, which affects not only underreporting (as seen earlier) but the

cost of an audit as well, the interactions are more complex, though the pattern that emerges

graphically is always the same: regardless of the parameterization in terms of γ and λ, zEUA

y

is always an inverted U-shaped function of α. The contrast with the partial equilibrium

impact of an increase in α on underreporting given in Figure 5 is striking. Consider the

case of a pessimistic consumer (top right-hand panel in Figure 11), with (γ, λ) = (1, 0): in

this case, Figure 5 showed that the partial equilibrium impact of an increase in α was to

decrease underreporting in an unambiguous manner. In the game-theoretic context, on the

other hand, this pattern only emerges once a threshold level of α has been crossed: for low

levels of α, the decrease in the cost of an audit caused by the α−squeeze (and thus the
increase in the underlying audit probability) is sufficient to more than offset the tendency

of the taxpayer to underreport less, the equilibrium result being that zEUA

y
is increasing in

α for low values of the latter.

Finally, in Figure 12 (in the Appendix) and 13 (below), we consider the impact of an

RPIA(2), as given in (5), on zEUA

y
, for our three point distribution of penalty rates. In

Figure 12, we plot zEUA

y
as a function of ∆ for η = 1, 2, 3. Note, for η = 1 or η = 2,
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that the definition of an RPIA implies that there is no impact of a change in ∆ on the

cost of an audit. The impact of an increase in ∆ on the equilibrium outcome is therefore

entirely determined by the partial equilibrium effect on underreporting that was considered

in Figure 6. This implies that, for the optimistic taxpayers considered in two left-hand

panels of Figure 12, zEUA

y
is increasing in ∆, whereas the opposite holds for the pessimistic

taxpayers considered in the two right-hand panels.16 This is highlighted in Figure 13, where

we restrict our attention to η = 2 and where the impact of a rise in ∆ follows exactly the

same pattern as in Figure 6.

0.05 0.1 0.15 0.2
D

0.01

0.02

0.03

0.04

0.05

zEUA Hg, l;2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅy

zEUAH0,0;2L

zEUAH1,0;2L

zEUAH0,0.9;2L

zEUAH0.6,0.1;2L

Figure 13: zEUA(.)
y

, as ∆ varies between 0 and 0.2, with the following parameterization:

u (x) = −e−νx
ν

, ν = 0.05, y = 10, t = 0.3, p = 0.03, θ1 = 0.2, q1 = 0.5, µθ = 0.25, σ
2
θ = 0.08.

16 Note that while an RPIA(2) does affect the cost of an audit when η = 3, its impact is not sufficiently
great to overturn the pattern that emerges in the two preceding cases, and the effect of an increase in ∆
remains consonant with that uncovered in a partial equilibrium setting.
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Adjusted Mean Complexity Predicted Willingness Estimated
gross AGI indicator tax change to pay cost of
income (IRS estimate % of AGI audit

category (AGI) mean median of evasion)
y ρ, σ2θ, ρq,

1
α
,∆, ξ z ϕRA or ϕA c (ξ, p)

$0 to < $15K $ 7 412 1,58 1 $ 167 0,99% $474
$15K to < $30K $ 21 965 1,68 1 $ 286 0,50% $495
$30K to < $45K $ 36 927 1,96 2 $ 370 0,36% $559
$45K to < $60K $ 52 075 2,23 2 $ 466 0,32% $628
$60K to < $90K $ 73 036 2,45 2 $ 540 0,29% $691
$90K to < $120K $102 845 2,58 2 $ 909 0,26% $731
$120K or more $334 194 2,82 3 $2 221 0,13% $811

total $ 50 477 1,94 1 $ 451 0,29% $554

Table 2: Taxable income, complexity, the willingness to pay for accountants’ services, and
the cost of an audit: the US in the year 2000

6.3 Empirical evidence (preliminary and incomplete)

Though historical time series evidence does not exist in terms of the cost to taxpayers of

preparing their returns, or of their use of professional accountants, some data do exist on a

cross-sectional basis, for different levels of taxable income. Data also exist that allow one to

link complexity to the level of underreporting. The IRS’s Compliance Information Research

System (CRIS) provides an indicator of the complexity of tax returns. In turn, Guyton,

O’Hare, Stavrianos, and Toder (2003) construct a measure of the "out of pocket money

burden" of preparing a tax return, which allows one to establish a relationship between level

of income, the complexity of preparing a return, and a rough measure of the willingness to

pay for accountants’ services. A coherent measure of z in this context is provided by the

"predicted tax change", an in-house IRS measure of evasion (this is not the same as the AGI

wage gap measures presented earlier). The available data are presented in Table 2.

6.3.1 Complexity and the cost of an audit

With respect to the relationship between tax code complexity and the cost of an audit,

evidence is available that allows one to assess the validity of the assumptions posed earlier.

The time to complete the average audit of an individual non-business taxpayer grew from
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9 hours in Fiscal Year (FY) 1997 to 19 hours in FY2003, a jump of over 100 percent.

Much of this increase can be attributed to passage of the 1998 taxpayer bill of rights that

required the IRS to allow taxpayers more time to settle amounts due. However, some of this

increase can be attributed to added complexity of the returns (GAO 2001). How much of

this increase is due to increased complexity would be difficult to identify and no studies have

been conducted to separate the various contributing factors. However, if we assume that of

the average increase of 10 hours audit time 2 hours is due to increased complexity and further

assume an average examiner cost of $50 per hour (including benefits, leave, etc.), then the

added complexity would boost per return audit cost by $100. Based on the data presented

in Table 2, the relationship between complexity and the cost of an audit for FY2000 is given

by

c = $50× 4.7829e0.4331ξ, R2 = 0.8312.

This relationship is convex, as assumed in our theoretical discussion.

6.3.2 Complexity and the willingness to pay for accountant’s services

The estimated relationship between the cost of preparing a return (and thus the willingness

to pay for accountant services) and complexity is given by

ϕRA = $11.4e1.2377ξ, R2 = 0.9538.

Though this increasing relationship between complexity and an empirical proxy for ϕRA

mimics the theoretical relationship plotted in Figure 8, the latter was a partial equilibrium

result that did not include the interaction with the IRS in the context of the tax-compliance

game. Further theoretical results are needed in order to establish whether such a pattern

would emerge as the equilibrium outcome.
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6.3.3 Complexity and underreporting (incomplete)

INCOMPLETE: contrast relationship using mean versus relationship using median AGI

7 Concluding remarks

This paper has shown that ambiguity, in the sense of Knightian uncertainty, concerning the

penalty rate, generates a tax compliance problem that is very different from the EU or RDEU

cases. In the context of a CSEU model with the NEO-additive capacities of Chateauneuf,

Eichberger, and Grant (2004), we have characterized optimal compliance behavior and stud-

ied how the latter varies as a function of various measures of ambiguity.

We have shown that taxpayers may suffer significant welfare losses as a result of the

ambiguity concerning penalty rates, and would be willing to pay a substantial fraction of

their income in order to eliminate it. Most of this willingness to pay appears to stem from

pure ambiguity concerns, not from risk.

Finally, in the context of a simple tax compliance game where the IRS sets the audit

probability and taxpayers choose their level of compliance, we have shown that the key

parameter, in terms of the effect on underreporting of a simpler or a more complex tax code,

is the increase in the cost of an audit associated with greater complexity. When the increase

in the cost of an audit associated with increasing complexity is sufficiently high, equilibrium

underreporting will be an increasing function of complexity. In this case, it would clearly

be in the interest of the IRS to simplify the tax code.
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A Appendix

A.1 Proof of Proposition 1: optimal compliance behavior
The solution to the taxpayer’s optimization problem is given by

z∗CSEU ≡ argmax
{z>0}

CSEU (γ, λ; z) ,

where CSEU (γ, λ) is defined in (1). The necessary First Order Condition (FOC) that implicitly charac-
terizes optimal compliance behavior is given by:17

p

 −θntγu
0 (y − θntz

∗
CSEU )− θ1tλu

0 (y − θ1tz
∗
CSEU )

− (1− γ − λ) t
nX
i=1

θiqiu
0 (y − θitz

∗
CSEU )

+ (1− p) tu0 (y + tz∗CSEU ) = 0.

Substituting the first-order Taylor expansions u0(y−θitz∗CSEU ) ≈ u0(y)−θitz∗CSEUu00(y) and u0(y+tz∗CSEU ) ≈
u0(y) + tz∗CSEUu

00(y) into the FOC allows one to write:

0 = [1− p− p (θnγ + θ1λ+ (1− γ − λ)µθ)]u
0 (y) (A.10)

+
£
1− p+ p

¡
θ2nγ + θ21λ+ (1− γ − λ)

¡
µ2θ + σ2θ

¢¢¤
tz∗CSEUu

00 (y) ,

where µθ =
Pi=n

i=1 qiθi, σ
2
θ =

Pi=n
i=1 qiθ

2
i − µ2θ. An interior solution will exist if and only if:

[1− p− p (θnγ + θ1λ+ (1− γ − λ)µθ)]
£
1− p+ p

¡
θ2nγ + θ21λ+ (1− γ − λ)

¡
µ2θ + σ2θ

¢¢¤
> 0,

which is equivalent to the condition that:

p < pCSEU (γ, λ) =
1

1 + θnγ + θ1λ+ (1− γ − λ)µθ
. (11)

17 The SOC is satisfied because of the concavity of u (.).
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Combining (10) and (11) implies that:

z∗CSEU (γ, λ) =

 1
tA(y)

µ
1−p−p(θnγ+θ1λ+(1−γ−λ)µθ)

1−p+p(θ2nγ+θ21λ+(1−γ−λ)(µ2θ+σ2θ))

¶
, if p < pCSEU (γ, λ)

0, otherwise
¥ (12)

A.2 Proof of Proposition 2: impact of an MPIR on welfare and
optimal compliance behavior

Straightforward differentiation yields:

∂2

∂θ2
u(y − θtz) = t2z2u00(y − θtz) < 0,

and

∂3

∂θ2∂z
u(y − θtz) = t2z [2u00(y − θtz)− θtzu000(y − θtz)] < 0.

Application of Lemma 2 then yields the result given in the Proposition. Note also that a second-order
Taylor expansion allows us to write the objective function of the taxpayer as:

CSEU (γ, λ; z) = u(y) + u0(y)t

×
µ

[1− p− pµθ − p [γ (θn − µθ) + λ (θ1 − µθ)]] z
∗
CSEU

−12
£
1− p+ p

¡
µ2θ + σ2θ

¢
+ p

£
γ
¡
θ2n − µ2θ − σ2θ

¢
+ λ

¡
θ21 − µ2θ − σ2θ

¢¤¤
z∗2CSEU tA (y)

¶
.

Evaluating this expression at the optimal value of z∗CSEU (as given in Proposition 1) then yields:

CSEU (γ, λ; z)

= u(y) +
u0(y)
2A(y)

(1− p− pµθ − p [γ (θn − µθ) + λ (θ1 − µθ)])
2

1− p+ p (µ2θ + σ2θ) + p
£
γ
¡
θ2n − µ2θ − σ2θ

¢
+ λ

¡
θ21 − µ2θ − σ2θ

¢¤ . (A.13)

This expression will be decreasing in σ2θ as long as 1− γ − λ > 0, as will z∗CSEU as given in Proposition 1.¥

A.3 Proof of Proposition 3: impact of an MPIR under smooth
ambiguity aversion

The FOC which implicitly defines the optimal level z∗SAA of underreporting is given by:

0 = t

·
(1− p)u0(y + tz∗SAA)

−p [θnqu0(y − θntz
∗
SAA) + θ1t(1− q)u0(y − θ1tz

∗
SAA)]

¸
×
Z 1

0

φ0
µ

p [qu(y − θntz
∗
SAA) + (1− q)u(y − θ1tz

∗
SAA)]

+ (1− p)u(y + tz∗SAA)

¶
f
¡
q, ρq

¢
dq,

which implies that:

(1− p)u0(y + tz∗SAA)− p

·
θnqu

0(y − θntz
∗
SAA)

+θ1t(1− q)u0(y − θ1tz
∗
SAA)

¸
= 0.
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Straightforward differentiation of the integrand of the objective function twice with respect to q yields:

∂2

∂q2
φ

µ
p

·
qu(y − θntz

∗
SAA)

+(1− q)u(y − θ1tz
∗
SAA)

¸
+ (1− p)u(y + tz∗SAA)

¶

= p2
·

u(y − θntz
∗
SAA)

−u(y − θ1tz
∗
SAA)

¸2
φ00

 p

·
qu(y − θntz

∗
SAA)

+(1− q)u(y − θ1tz
∗
SAA)

¸
+(1− p)u(y + tz∗SAA)

 ,

which, applying Lemma 2(i), implies that dSAA
dρq

< 0, as long as the taxpayer is ambiguity-averse (φ00 < 0).
Differentiating the preceding expression with respect to z yields:

∂3

∂z∂q2
φ

µ
p

·
qu(y − θntz

∗
SAA)

+(1− q)u(y − θ1tz
∗
SAA)

¸
+ (1− p)u(y + tz∗SAA)

¶
= tp2

·
2

·
θ1u

0(y − θ1tz
∗
SAA)

−θnu0(y − θntz
∗
SAA)

¸ ·
u(y − θntz

∗
SAA)

−u(y − θ1tz
∗
SAA)

¸
φ00 (.)

¸
+tp2

·µ
p

· −θnqu0(y − θntz
∗
SAA)

−θ1(1− q)u0(y − θ1tz
∗
SAA)

¸
+ (1− p)u0(y + tz∗SAA)

¶
φ000 (.)

¸
.

Substituting from the FOC yields:

∂3

∂z∂q2
φ

µ
p

·
qu(y − θntz

∗
SAA)

+(1− q)u(y − θ1tz
∗
SAA)

¸
+ (1− p)u(y + tz∗SAA)

¶
= 2tp2

·
θ1u

0(y − θ1tz
∗
SAA)

−θnu0(y − θntz
∗
SAA)

¸ ·
u(y − θntz

∗
SAA)

−u(y − θ1tz
∗
SAA)

¸
φ00 (.) .

A first-order Taylor expansion of the first element on the RHS of this expression allows one to rewrite it as:

∂3

∂z∂q2
φ

µ
p

·
qu(y − θntz

∗
SAA)

+(1− q)u(y − θ1tz
∗
SAA)

¸
+ (1− p)u(y + tz∗SAA)

¶
= 2tp22 [u0(y)]2 (θn − θ1)

2
[1 + (θn + θ1)A(y)tz] tz

∗
SAAφ

00 (.) < 0.

By Lemma 2(ii), it follows that dz∗SAA
dρq

< 0.¥

A.4 An explicit second-order approximation to optimal underre-
porting under smooth ambiguity aversion, with a Beta distri-
bution and negative-exponential utility and ambiguity func-
tionals

z∗SAA =
eRY (DH (θ1) +BH (θn))

t

µ
D(1+D)H(θ1)

2+B(1+B)H(θn)
2+2BDH(θ1)H(θn)

1+B+D + eRYR

·
D
¡
1 + p

¡
θ21 − 1

¢¢
+B

¡
1 + p

¡
θ2n − 1

¢¢ ¸¶ ,
where H (θi) = 1− p− pθi, ∀i = 1, n.
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A.5 Proof of Proposition 4: impact of a squeeze on welfare and
optimal compliance behavior

Consider the expression for the welfare of the taxpayer at the optimum, given in (13). Applying the
α-squeeze to this expression yields:

CSEU (γ, λ; z)

= u(y) +
u0(y)
2A(y)

µ
1− p− pµθ − p

·
γ ((αθn + [1− α]µθ)− µθ)
+λ ((αθ1 + [1− α]µθ)− µθ)

¸¶2
1− p+ p (µ2θ + α2σ2θ) + p

 γ
³
(αθn + [1− α]µθ)

2 − µ2θ − α2σ2θ

´
+λ

³
(αθ1 + [1− α]µθ)

2 − µ2θ − α2σ2θ

´  .

Applying the same principle to the second-order approximation given in Proposition 1 yields:

z∗CSEU (γ, λ) =
1

tA(y)

1− p− p

µ
γ (αθn + [1− α]µθ)

+λ (αθ1 + [1− α]µθ) + (1− γ − λ)µθ

¶
1− p+ p

µ
γ (αθn + [1− α]µθ)

2

+λ (αθ1 + [1− α]µθ)
2 + (1− γ − λ)

¡
µ2θ + α2σ2θ

¢ ¶ .
Straightforward but tedious differentiation of these expressions with respect to α establishes the Proposition.¥

A.6 An α-squeeze when penalty rates are distributed according
to the arcsin distribution

z∗CSEU (γ, λ) =
1

tA(y)

4 (2− p [3 + α (γ − λ)])

8 + p (−6 + α (α+ 4γ (1 + λ)− (4− α)λ))
.

A.7 Proof of Lemma 3: the risk premium under CSEUwith NEO-
additive capacities

The CSEU of the gamble in question is given by:

CSEU = γu (y + kεn) + λu (y + kε1) + (1− γ − λ)
i=nX
i=1

qiu (y + kεi) .

Define the risk-premium π(k; .) in the usual manner by CSEU − u (y − π(k; .)) ≡ 0. Differentiating the
previous identity twice with respect to k yields

0 ≡ γεnu
0 (y + kεn) + λε1u

0 (y + kε1)

+ (1− γ − λ)
nX
i=1

qiεiu
0 (y + kεi) + π0(k; .)u0 (y − π(k; .)) ,

0 ≡ γε2nu
00 (y + kεn) + λε21u

00 (y + kε1) + (1− γ − λ)
nX
i=1

qiε
2
iu
00 (y + kεi)

+π00(k; .)u0 (y − π(k; .))− [π0(k; .)]2 u00 (y − π(k; .)) .

Evaluate the initial identity and the two derivatives at k = 0. This yields:

π(0; .) = 0, π0(0; .) = − (γεn + λε1) ,
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π00(0; .) =
h
− (γεn + λε1)

2 + γε2n + λε21 + (1− γ − λ)σ2ε

i
A(y).

By a second-order MacLaurin expansion around k = 0, π(k; .) = π(0; .)+ kπ0(0; .)+ k2

2 π
00(0; .). Substitution

then yields:

πRACSEU (t; .) = −k (γεn + λε1) +
k2

2

·
γε2n + λε21 − (γεn + λε1)

2

+(1− γ − λ)σ2ε

¸
A(y).

The premium for eliminating ambiguity alone, for its part, is implicitly defined by CSEU−Pi=n
i=1 qiu (y + kεi − π(k; .)) =

0. Proceeding as above yields:

πACSEU (t; .) = −k (γεn + λε1) +
k2

2

· ¡
γε2n + λε21

¢− (γεn + λε1)
2

− (γ + λ)σ2ε

¸
A(y).¥

A.8 Proof of Proposition 5: risk premia for the tax compliance
gamble under CSEU with NEO-additive capacities

Consider the expression for the welfare of the taxpayer at the optimum, as given in the proof of Proposition
2:

CSEU (γ, λ; z) (A.14)

= u(y) +
u0(y)
2A(y)

(1− p− pµθ − p [γ (θn − µθ) + λ (θ1 − µθ)])
2

1− p+ p (µ2θ + σ2θ) + p
£
γ
¡
θ2n − µ2θ − σ2θ

¢
+ λ

¡
θ21 − µ2θ − σ2θ

¢¤ .
The premium ϕRA associated with eliminating both risk and ambiguity concerning the value of the penalty
rate is implicitly defined by:

CSEU (γ, λ; z) = pu
¡
y − µθtz − ϕRA

¢
+ (1− p)u(y + tz − ϕRA).

A second-order Taylor expansion of the RHS of this expression yields:

u (y)− u0 (y)ϕRA +
1

2
u00(y)

¡
ϕRA

¢2
+ (1− p− pµθ)

¡
1 +A(y)ϕRA

¢
u0(y)tz +

1

2

¡
1− p+ pµ2θ

¢
u00(y)t2z2.

Optimizing with respect to z and substituting back into the objective function yields:

u (y) +
u0(y)
2A(y)

(1− p− pµθ)
2

(1− p+ pµ2θ)
+

"
(1− p− pµθ)

2

(1− p+ pµ2θ)
− 1
#
u0 (y)ϕRA +

u00(y)
2

"
1− (1− p− pµθ)

2

(1− p+ pµ2θ)

# ¡
ϕRA

¢2
.

Equating this expression with (14) and solving the ensuing quadratic equation in ϕRA yields:

ϕRA(γ, λ) = − 1

A(y)

1±
vuuut1− (1−p−pµθ−p[γ(θn−µθ)+λ(θ1−µθ)])2

1−p+p(µ2θ+σ2θ)+p[γ(θ2n−µ2θ−σ2θ)+λ(θ21−µ2θ−σ2θ)]

1− (1−p−pµθ)2
1−p+pµ2θ

 .

Now consider premium ϕA for eliminating only ambiguity concerning the penalty rate, while risk remains.
This is implicitly defined by

CSEU (γ, λ; z) = p
i=nX
i=1

qiu
¡
y − θitz − ϕA

¢
+ (1− p)u(y + tz − ϕA).

42



A second-order Taylor expansion of the RHS of the preceding expression yields:

u (y)−u0 (y)ϕA+
1

2
u00 (y)

¡
ϕA
¢2
+(1− p− pµθ)

¡
1 +A(y)ϕA

¢
u0 (y) tz+

1

2

£
1− p+ p

¡
µ2θ + σ2θ

¢¤
u00 (y) t2z2.

Optimizing with respect to z and substituting back into the objective function yields:

u (y)+
u0 (y)
2A (y)

(1− p− pµθ)
2

[1− p+ p (µ2θ + σ2θ)]
+

"
(1− p− pµθ)

2

[1− p+ p (µ2θ + σ2θ)]
− 1
#
u0 (y)ϕA+

u00 (y)
2

"
1− (1− p− pµθ)

2

[1− p+ p (µ2θ + σ2θ)]

# ¡
ϕA
¢2
.

Equating, as before, this expression with (14) and solving for the ensuing quadratic equation in ϕA yields:

ϕA = − 1

A (y)

1±
vuuuut1− (1−p−pµθ−p[γ(θn−µθ)+λ(θ1−µθ)])2

1−p+p(µ2θ+σ2θ)+p[γ(θ2n−µ2θ−σ2θ)+λ(θ21−µ2θ−σ2θ)]

1− (1−p−pµθ)2
1−p+p(µ2θ+σ2θ)

 .¥

A.9 Proof of Proposition 6: comparative statics of the equilibrium
under ambiguity (EUA) of the tax-compliance game

The FOC which implicitly defines the optimal penalty rate is given by

(1 + µθ) tz −
∂c
¡
ξ, pEUA

¢
∂p

= 0,

while optimal compliance behavior is given by the second-order approximation derived in Proposition 1.
Evaluating the preceding FOC at z = z∗CSEU (p

EUA, ρ) and differentiating with respect to ρ yields:

dpEUA

dρ
= −

(1 + µθ) t
∂z∗CSEU (p

EUA,ρ)
∂ρ − ∂2c(ξ,pEUA)

∂p∂ξ
dξ(θ1,θn,ρ)

dρ

(1 + µθ) t
∂z∗CSEU (pEUA,ρ)

∂p − ∂2c(ξ,pEUA)
∂p2

.

Now consider optimal compliance behavior, which we evalute at p = pEUA. Differentiating with respect to
ρ yields:

dz

dρ

EUA

=
∂z∗CSEU (p

EUA, ρ)

∂p

dpEUA

dρ
+

∂z∗CSEU (p
EUA, ρ)

∂ρ
.

Substituting for dpEUA

dρ from the previous expression and rearranging yields

dz

dρ

EUA

=

−∂z∗CSEU (p
EUA,ρ)

∂p

∂2c(ξ,pEUA)
∂p∂ξ

dξ(θ1,θn,ρ)
dρ −

∂z∗CSEU (pEUA,ρ)

∂ρ

∂2c(ξ,pEUA)
∂p2

∂z∗
CSEU

(pEUA,ρ)

∂p

∂2c(ξ,pEUA)
∂p∂ξ


− (1 + µθ) t

∂z∗CSEU (pEUA,ρ)
∂p + ∂2c(ξ,pEUA)

∂p2

.

This expression, combined with the fact that−∂z∗CSEU (p
EUA,ρ)

∂p

∂2c(ξ,pEUA)
∂p∂ξ > 0 and− (1 + µθ) t

∂z∗CSEU (p
EUA,ρ)

∂p +

∂2c(ξ,pEUA)
∂p2 > 0 proves the Proposition.¥
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Figure 10: zEUA(.)
y as a function of σ2θ for the following parameterization: u (x) = − e−νx

ν , ν = 0.05, y = 100, t = 0.3, p = 0.03, c = 10, θ1 = 0,

q1 = 0.5, µθ = 0.25, σ
2
θ ∈ [0, 2.5] .
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Figure 11: zEUA(.)
y using penalty rates distributed according to the arcsin density and with the following parameterization: u (x) = − e−νx

ν , ν = 0.5,

y = 10, t = 0.3, p = 0.03, c = 10, θ1 = 0, θn = 3.
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Figure 12: zEUA(.)
y as a function of ∆, with the following parameterization: u (x) = − e−νx

ν , ν = 0.05, y = 10, t = 0.3, p = 0.03, c = 10, θ1 = 0.2,

q1 = 0.5, µθ = 0.25, σ
2
θ = 0.08.
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Figure 13: z
EUA(.)
y as a function of ∆, with the following parameterization: u (x) = − e−νx

ν , ν = 0.05, y = 10, t = 0.3, p = 0.03, c = 10, θ1 = 0.2,

q1 = 0.5, µθ = 0.25, σ
2
θ = 0.08.




